APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Civil Engineering (Computer Aided Structural Engineering)

Scheme of Instruction & Syllabus: 2015 Admissions

Compiled By **Rajiv Gandhi Institute of Technology, Kottayam** July 2015

APJ Abdul Kalam Technological University

(Kottayam Cluster)

M. Tech Program in Computer Aided Structural Engineering

Scheme of Instruction

Credit requirements: 67 credits (22+19+14+12)Normal Duration: Regular: 4 semesters; External Registration: 6 semesters;Maximum duration: Regular: 6 semesters; External Registration: 7 semesters.Courses: Core Courses: Either 4 or 3 credit courses; Elective courses: All of 3 creditsAllotment of credits and examination scheme:- Semester 1 (Credits: 22)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credit s
					Marks	Hour	
						S	
А	04 CE 6101	Analytical methods in	4-0-0	40	60	3	4
		Engineering					
В	04 CE 6103	Theory of Elasticity	4-0-0	40	60	3	4
С	04 CE 6105	Structural Dynamics	3-0-0	40	60	3	3
D	04 CE 6107	Advanced design of concrete	3-0-0	40	60	3	3
		structures					
E	04 CE 6XXX	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 CE 6191	Seminar - I	0-0-2	100	0	0	2
	04 CE 6193	Computer Applications Lab	0-0-2	100	0	0	1
		Total	23				22

Semester 2 (Credits: 19)

А	04 CE 6102	Bridge engineering	4-0-0	40	60	3	4
В	04 CE 6104	Finite element analysis	3-0-0	40	60	3	3
С	04 CE 6106	Theory of Plates and Shells	3-0-0	40	60	3	3
D	04 CE 6XXX	Elective-2	3-0-0	40	60	3	3
E	04 CE 6XXX	Elective-3	3-0-0	40	60	3	3
	04 CE 6192	Mini Project	0-0-4	100	0	0	2
	04 CE 6194	Structural Engineering Lab	0-0-2	100	0	0	1

19

Summer Break

04 CE 7190	Industrial Training	0-0-4		Pass/
				Fail

Semester 3 (Credits: 14)

Exam Slot	Course No:	Name	L-T- P	Internal Marks	End Semester Exam		Credits
					Marks	Hours	
А	04 CE 7XXX	Elective-4	3-0-0	40	60	3	3
В	04 CE 7XXX	Elective-5	3-0-0	40	60	3	3
	04 CE 7191	Seminar -II	0-0-2	100	0	0	2
	04 CE 7193	Project (Phase 1)	0-0-	50	0	0	6
			12				

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam	Credits
NA	04 CE 7194	Project (Phase 2)	0-0-21	70	30	12

ELECTIVE LIST

ELECTIVE GROUP	Exam Slot	Course No:	Name
	E	04 CE 6109	Pre-stressed Concrete Structures
1	E	04 CE 6111	Structural Reliability
	E	04 CE 6113	Advanced Concrete Technology
	D	04 CE 6108	Advanced Analysis of Structures
2	D	04 CE 6112	Computer Aided Design
2	D	04 CE 6114	Structural Optimization
D		04 CE 6116	Microstructure & Innovations in structural concrete
	E	04 CE 6118	Earthquake Resistant Design
2	E	04 CE 6122	Advanced Steel Structures
3	E	04 CE 6124	Design of substructure
	E	04 CE 6126	Experimental Stress Analysis
	А	04 CE 7101	Design of Steel concrete composite structures
Л	А	04 CE 7103	Experimental Techniques & Instrumentation
4	А	04 CE 7105	Design of Cylindrical shell and Folded Plates
	А	04 CE 7107	Design of Tall Buildings
	В	04 CE 7109	Numerical Methods in Civil Engineering
E	В	04 CE 7111	Engineering Fracture Mechanics
5	В	04 CE 7113	Maintenance & Rehabilitation of Structures
	В	04 CE 7115	Prefabricated structures

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6101	Analytical methods in Engineering	3-1-0 :4	2015

Course Objectives: The Student will be able to:-

- Understanding of fundamental mathematics and to solve problems of algebraic and differential equations, simultaneous equation, partial differential equations
- To provide an overview of discovering the experimental aspect of modern applied mathematics

Syllabus

Differential equations , Partial differential equations, Charpit's method, Boundary value problems ,Numerical solutions of P.D.E

Course Outcome:

- Ability to solve the model by selecting and applying a suitable mathematical method.
- Ability to interpreting the mathematical results in physical or other terms to see what it practically means and implies

Text Books:

- B.S Grewal, "Numerical Methods in Engineering and Science", Khanna Publications.
- George F. Simmons, "Differential Equations with applications and historical notes", TMH Edition
- Michael D Greenberg, "Advanced Engineering Mathematics", Pearson education.
- Ian Sneddon, "Elements of Partial Differential Equations", McGraw Hill, International Editions.
- P Kandasamy, "Numerical Methods", S Chand and company.
- S.Arumugam, A. Thangapandilssac, "Numerical methods", Scitech

COURSE CODE:	COURSE TITLE	CRED	ITS
04 CE 6101	04 CE 6101 Analytical methods in Engineering) :4
	Contact Hours	Sem. Exam Marks (%)	
MODULE 1: Differ Linear different problems–Cauchy equations–variati	ential equations ial equations–homogeneous equations–boundary value r–Euler equations–factoring the operator–non-homogeneous on of parameters.	10	15
MODULE 2: Partial differential equations Ordinary differential equations in more than two variables – first order P.D.E– integral surface passing through a given curve–surfaces orthogonal to given system–compatible systems of first order P.D.E			15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Char second order in p	pit's method-solution satisfying the given conditions-P.D.E hysics-linear P .D.E with constant coefficients.	10	15
MODULE 4: Bound Elementary soluti these equations in	lary value problems ons of Laplace equations, wave equations, series solution of n two dimensions–related problems in engineering	10	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Cla approximations to	ssification of second order equation— finite difference partial derivatives.	8	20
MODULE 6: Nume Solution of Lapla dimensional wave	MODULE 6: Numerical solutions of P.D.E Solution of Laplace equation by finite difference method–solution of one dimensional wave equations		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6103	THEORY OF ELASTICITY	3-1-0-4	2015

Course Objectives:

The Student will be able to:-

- Understanding the basic concepts of forces, stresses, strain etc
- Understanding the general concepts of plasticity, asymmetric problems.

Syllabus

Elasticity, Two dimensional stress-strain problems, Airy's stress function, Analysis of asymmetric problems and Torsion, Torsion of prismatic bar, Plasticity.

Course Outcome:

The student will be able to execute the stress state, stresses and strains analysis .also they will be able to use the numerical methods for the problem of the theory of elasticity in practice.

Text Books:

- Timoshenko S P and Goodier J. N, "Theory of Elasticity", Tata Mcgraw Hill International Student Edition
- Thin plates and shells, theory ,application-Edward Ventsel, Krauthammer.
- Johnson W and Mellor P. B, "Plasticity for mechanical engineers", Van Nostrand Company Ltd.
- Sadhu Singh, "Theory of elasticity", Khanna Publishers, Delhi.
- Sadhu Singh, "Theory of Plasticity", Khanna Publishers, Delhi.
- Srinath L. S, "Advanced mechanics of solids", Tata McGraw– Hill Publishing Company Ltd., New Delhi.
- Arthur P Boresi& Omar M SideBottom, "Advanced Mechanics of Materials", John Wiley & Sons.
- Sokolnikoff, "Mathematical Theory of Elasticity".

COURSE CODE:	OURSE CODE: COURSE TITLE				
04 CE 6103	THEORY OF ELASTICITY	3-1-0	-4		
	MODULES				
MODULE 1:Elastic	ity				
Basic concepts- dimensional stress stresses & strains Equilibrium equat Boundary condition	10	15			
MODULE 2: Two d	imensional stress-strain problems				
Plane stress and strain relations-	10	15			
MODULE 3:Airy's stress function–Biharmonic Equilibrium–St Venant's principle–2D problems in Cartesian coordinate–cantilever with concentrated load at free end– Simply supported With UDL–Cantilever with moment at free end.			15		
MODULE 4:Modu	le 4				
Analysis of asymmetric problems and Torsion General equations in polar co ordinates–Stress distribution symmetric about an axis–Cylinder subjected to external and internal pressures– Rotating disc as a 2D problem. Effect of circular hole in stress distribution of plates.			15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5:Torsic approaches – St. Circular sections -	on of prismatic bar– General solution–Warping function Venant's theory– Membrane analogy– Torsion of Non - Torsion of multi celled thin wall open and closed sections.	8	20		
MODULE 6:Plastic					
Introduction to pl plastic body – Pla Plastic potential – for bending and to	asticity – General concepts – Stress – Strain curves – Ideal astic flow conditions – theories of failure – plastic work – Yield criteria – Simple applications –Elasto– plastic analysis prsion of bars – Residual stresses	8	20		
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6105	STRUCTURAL DYNAMICS	3-0-0:3	2015

Course Objectives:

The Student will be able to:-

- Learn how to model discrete single-degree and multiple-degree vibratory systems and calculate the free and forced response of these systems.
- Also, calculate the mode shapes and frequencies for the free response of continuous systems and use modal methods to calculate their response

Syllabus

Introduction to dynamic problems and their solutions.Single Degree of Freedom System and their responses to different loading conditions.Vibration isolation and transmissibility.Multidegree Freedom Systems and Continuous systems and their solutions.Approximate methods for analysis.

Course Outcome:

• The student will be able to understand the principles associated with effective project management and application of these principles in avoiding common difficulties associated with project management

Text Books:

- 1. Clough & Penzien, "Dynamics of Structures".
- 2. Meirovitch.L, "Elements of Vibration Analysis".
- 3. W.T. Thomson, "Vibration Theory and Applications".
- 4. M.Mukhopadhyay, "Vibrations, Dynamics & Structural systems".
- 5. Paz Mario, "Structural Dynamics–Theory and Computation".
- 6. Denhartog, "Mechanical vibrations".
- 7. Timoshenko, "Vibration Problems in Engineering".
- 8 Anil K Chopra, "Dynamics of structures", Pearson Education

COURSE CODE:	COURSE TITLE	CREI	DITS			
04 CE 6105	STRUCTURAL DYNAMICS	3-0-	0:3			
	Contact Hours	Sem. Exam Marks (%)				
MODULE 1:Object Vibration- types, principle of virtua	6	15				
MODULE 2:Developing equations of motion for different systems. Numerical problems. vibration measuring equipments			15			
	INTERNAL TEST 1 (MODULE 1 & 2)					
MODULE 3:Damping- types, response for free vibration to harmonic loading. critical damping – over damping – under damping – logarithmic decrement. Numerical problems			15			
MODULE 4:Vibration isolation and transmissibility. response to periodic forces.Duhamel integral for undamped system. Response to impulsive loads. Numerical problems		7	15			
	INTERNAL TEST 2 (MODULE 3 & 4)					
MODULE 5:Natura and harmonic vil vibration of beam	al modes –orthogonality conditions – modal Analysis – free pration – Free longitudinal vibration of bars – flexural s with different end conditions – forced vibration	8	20			
MODULE 6:Rayleigh's method –Dunkerley's method –Stodola's method – Rayleigh –Ritz method – Matrix method.			20			
	END SEMESTER EXAM					

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6107	ADVANCED DESIGN OF CONCRETE STRUCTURES	3-0-0:3	2015

Course Objectives:

- To learn the fundamentals of design, analysis, and proportioning of reinforced concrete members and structures.
- Methods for analysis and design of the elements under flexure, shear, and axial loads will be examined

Syllabus

Review of limit state design of beams, Design of slender columns, Yield line theory.

Course Outcome:

The students will be familiar with advanced methods used for concrete structural design and also they can Identify underlying concepts in modern concrete design methods

Text Books:

- Arthur.H.Nilson, David Darwin& Charles W Dolan, "Design of Concrete Structures", Tata Mcgraw Hill, 2004
- Sinha.N.C. and Roy S.K., "Fundamentals of Reinforced Concrete", S.Chand and Company Limited, New Delhi, 2003.
- Park.R&Paulay T "Design of Concrete Structures", John Wiley & Sons, NewYork
- Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall of India, 2005.
- Varghese P.C, "Limit State Design of Reinforced Concrete, Prentice Hall of India, 2007.
- Purushothaman, P, "Reinforced Concrete Structural Elements : Behaviour Analysis and Design", Tata McGraw Hill, 1986

COURSE CODE:	COURSE TITLE	CRED	ITS
04 CE 6107	04 CE 6107 ADVANCED DESIGN OF CONCRETE STRUCTURES		0:3
MODULES			Sem. Exam Marks (%)
MODULE 1:Review to IS Codes. Calcu	v of limit state design of beams, slabs and columns according lation of deflection and crack width	6	15
MODULE 2:Design of slender columns - Design of RC walls - ordinary and shear walls. Strut and tie method of analysis for corbels and deep beams, Design of corbels.			15
INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: Grid floors- Design of flat slabs and flat plates- Design of spandrel beams-Design of shear reinforcement			15
MODULE 4: Yield line theory and Hillerborgs strip method of design of slabs.			15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Introd with Moment re Buildings with Mo	uction-Method of analysis-Analysis of Multi-Storey Buildings esistant Joints for Lateral loads-Analysis of Multi-Storey ment resistant Joints for Gravity loads(Vertical Loads)	8	20
MODULE 6:Design resistance of strue	n of cast-in-situ joints in frames. Detailing for ductility - Fire ctural members – Quality of control of concrete.	8	20
	END SEIVIESTEK EXAIVI		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6109	Advanced Concrete Technology	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- To study the properties of concrete making materials such as cement, aggregates and admixtures
- To study the properties and tests on fresh and hardened concrete

Syllabus

Aggregate classification, Cement, garde of Cement, Hydration of Cement, Principles of Concrete mix design, methods of Concrete mix design, Design of high strength and high performance concrete. Non destructive testing and quality control, Durability, corrosion protection and fire resistance. Modern trends in concrete manufacture and placement techniques, different types of concrete.

Course Outcome:

Students who successfully complete this course canexecute and test the concrete made with cement, aggregates and admixtures and alsodescribe the properties and durability of fresh and hardened concrete and their testing methods

Text Books:

- 1. Krishnaraju, N., "Advanced Concrete Technology", CBS Publishers.
- 2. Nevile, A. M., "Concrete Technology", Prentice Hall, Newyork, 1985.
- 3. Santhakumar A.R. "Concrete Technology".

		•	13
04 CE 6109	04 CE 6109 Advanced Concrete Technology		:3
MODULES			Sem. Exam Marks (%)
MODULE 1:Aggre grade of Cement, hydrated Cement	gate classification, Testing Aggregates, fibres. Cement, chemical composition, Hydration of Cement, Structure of	7	15
MODULE 2:Specia	l Cement, Water, Chemical and Mineral Admixtures.	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Principles of Concrete mix design, methods of Concrete mix design, Design of high strength and high performance concrete.			15
MODULE 4:Rheological behaviour of fresh Concrete, Properties of fresh and hardened concrete, Strength, Elastic properties, Creep and Shrinkage, Variability of concrete strength. Non destructive testing and quality control, Durability, corrosion protection and fire resistance			15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Mod techniques, Meth concreting, Speci Under water conc	ern trends in concrete manufacture and placement ods of transportation, Placing and curing-Extreme whether al concreting methods, Vacuum dewatering of concrete– creting.	6	20
MODULE 6:Light Concrete, Polyme properties and aggregates.	6	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6111	PRESTRESED CONCRETE STRUCTURES	3-0-0-3	2015

Course Objectives:

- To Explain the effects of prestress on the behaviour of concrete beams and identify situations when prestress is needed
- To determine the combined stresses induced by prestress and applied loads
- To define and determine the different types of losses of pre-stressed concrete

Syllabus

Analysis and design of simply supported (post and pre tensioned) ,Design for shear, bond and torsion – Design of end blocks (IS code method),Design of tension members - Design of compression members ,Composite construction with precast RC beamsStatically indeterminate structures – Analysis and design – Continuous beams

Course Outcome:

The students will be familiar the concepts of pre-stressed concrete, dealing with load analysis. also be introduced to types pre stressed concrete structures

Text Books:

- 1. Krishna Raju N, "Prestressed Concrete", 4th Edition TMH New Delhi, 2000
- 2. Sinha N.C. & Roy, "Fundamentals of Prestressed Concrete", S.Chand& Co, 1985
- 3. Rajagopalan N, "Prestressed Concrete", Narora Publishing house, 2002
- 4. Lin T.Y, "Design of Prestressed Concrete Structures", John Wiley & Sons , 1960
- 5. Pandit and Gupta, "Prestressed concrete", CBS, 2002
- 6. F K Kong and R H Evans, " reinforced and prestressed concrete", TMH, 1999

COURSE CODE:	COURSE TITLE	CR	EDITS
04 CE 6111	04 CE 6111 PRESTRESED CONCRETE STRUCTURES		0-0:3
	MODULES		
MODULE 1:Analysis and design of simply supported (post and pre tensioned) - PSC flexural members – Basic concepts – Stresses at transfer and service loads, ultimate strength in flexure – short term deflections and long term deflections as per IS Code		6	15
MODULE 2:Desigr	and analysis of post and pre tensioned PSC slabs.	6	15
INTERNAL TEST 1 (MODULE 1 & 2)7			
MODULE 3:Design code method) – I Design of prestres	n for shear, bond and torsion – Design of end blocks (IS Design of prestressed concrete cylindrical water tanks – ssed concrete pipes	7	15
MODULE 4:Design of tension members - Design of compression members – compression members with and without flexure – Design of piles		7	15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Comp design – Ultimate and design approx	osite construction with precast RC beams- Analysis and strength – Partial prestressing– Definitions – principles aches.	8	20
MODULE 6:Static Continuous beam profile and cap ca	ally indeterminate structures – Analysis and design – as – concept linear transformation – concordant cable bles.	8	20
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6113	STRUCTURAL RELIABILITY	3-0-0-3	2015

Course Objectives:

- To provide a brief review of mathematical tools for quantifying uncertainties using theories of probability ,random variables and random processes
- To provide necessary background to carryout reliability based design

Syllabus

Concepts of structural safety, Probability theory, resistance distribution and parameters, Probabilistic analysis of loads, Basic structural reliability, Level-2 Reliability method

Course Outcome:

The student will understand the theories of probability ,random variables and random processes. And also able to carryout reliability based design

Text Books:

- 1. NobrertLlyd Enrick, "Quality control and reliability", Industrial press New York.
- 2. A K Govil, "Reliability engineering", Tata McGraw Hill, New Delhi.
- 3. Alexander M Mood, "Introduction to the theory of statistics", McGraw Hill, Kogakusha Ltd.
- 4. Ranganathan, "Reliability of structures".

COURSE CODE:	COURSE TITLE	CR	EDITS
04 CE 6113	04 CE 6113 STRUCTURAL RELIABILITY		0-0:3
MODULES			Sem. Exam Marks (%)
MODULE 1:Conce	epts of structural safety:-Basic statistics:-Introduction-		
data reduction-his	stograms-sample correlation.	6	15
MODULE 2:Proba	bility theory, resistance distribution and parameters:-		
Introduction- stat	istics of properties of concrete and steel, statistics of	6	15
strength of bricks	and mortar		
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Dime	ensional variations-characterisation of variables of		
compressive stre	ngth of concrete in structures and yield strength of	7	15
concrete in struc	tures and yield strength of steel – allowable stresses	/	13
based on specified reliability			
MODULE 4:Proba	bilistic analysis of loads: - Gravity load-introduction-load		
as a stochastic process. Wind load-introduction-wind speed-return			15
period-estimation			
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Basic	structural reliability: - Introduction-computation of		
structural reliabi	lity. Monte carlo study of structural safety and	8	20
applications.			
MODULE 6:Level-	2 Reliability method: - Introduction-basic variables and		
failure surface-firs	st order second moment methods like Hasofer and Linds		
method-nonnorm	al distributions-determination of B for present design-	8	20
correlated variabl			
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
09 GN 6001	RESEARCH METHODOLOGY	0-2-0:2	2015

Course Objectives:

To enable the students:

- To get introduced to research philosophy and processes in general.
- To formulate the research problem and prepare research plan
- To apply various numerical /quantitative techniques for data analysis
- To communicate the research findings effectively

Syllabus

Introduction to the Concepts of Research Methodology, Research Proposals, Research Design, Data Collection and Analysis, Quantitative Techniques and Mathematical Modeling, Report Writing.

Course Outcome:

Students who successfully complete this course would learn the fundamental concepts of Research Methodology, apply the basic aspects of the Research methodology to formulate a research problem and its plan. They would also be able to deploy numerical/quantitative techniques for data analysis. They would be equipped with good technical writing and presentation skills.

Text Books:

- 1. Research Methodology: Methods and Techniques', by Dr. C. R. Kothari, New Age International Publisher, 2004
- 2. Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE Publications Ltd; Third Edition

- 1. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard, Juta and Company Ltd, 2004
- 2. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004
- 3. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 4. Management Research Methodology' by K. N. Krishnaswamy et al, Pearson Education

09 GN 6001 RESEARCH METHODOLOGY 0-2-0: 2 MODULES Contact Hours MODULE : 1 Introduction to Research Methodology: Concepts of Research, Meaning and 2 Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical 5 MODULE : 2 Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights. 4 MODULE : 3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments. 5 MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis. 5 MODULE : 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Plagiarism, Citation and acknowledgement. 5 MODULE : 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques. 4	COURSE CODE:	COURSE TITLE	CRED	ITS	
MODULESContact HoursMODULE : 1Introduction to Research Methodology: Concepts of Research, Meaning and 2 Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical5MODULE :2 Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights.4MODULE :3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments.5MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis.5MODULE :5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement.4MODULE :6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.4	09 GN 6001	RESEARCH METHODOLOGY	0-2-0): 2	
MODULE : 1 Introduction to Research Methodology: Concepts of Research, Meaning and 2 5 Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical 5 MODULE :2 Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights. 4 MODULE :3 INTERNAL TEST 1 (MODULE 1 & 2) 4 MODULE:3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments. 5 MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis. 5 MODULE 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement. 5 MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques. 4		MODULES	Contact Hours		
Introduction to Research Methodology: Concepts of Research, Meaning and 2 Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical5MODULE :2 	MODULE : 1				
MODULE :2 Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights.4INTERNAL TEST 1 (MODULE 1 & 2)MODULE: 3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments.5MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis.5MODULE: 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement.5MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.4	Introduction to Resolution to Resolution to Resolution Conceptual vs. Emp	search Methodology: Concepts of Research, Meaning and 2 arch, Research Process, Types of Research, Type of research: /tical, Applied vs. Fundamental, Quantitative vs. Qualitative, and irical	5		
Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights. 4 INTERNAL TEST 1 (MODULE 1 & 2) MODULE: 3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments. 5 MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis. 5 MODULE: 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, 	MODULE :2				
INTERNAL TEST 1 (MODULE 1 & 2) MODULE: 3 Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments. 5 MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis. 5 INTERNAL TEST 2 (MODULE 3 & 4) MODULE: 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement. 5 MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques. 4	Criteria of Good Re involved in definitic aspects, IPR issues li	search, Research Problem, Selection of a problem, Techniques on of a problem, Research Proposals – Types, contents, Ethical ke patenting, copyrights.	4		
MODULE: 3Research Design : Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments.5MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis.5MODULE 5INTERNAL TEST 2 (MODULE 3 & 4)MODULE: 5Feport Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement.5MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.4		INTERNAL TEST 1 (MODULE 1 & 2)		I	
MODULE 4: Quantitative Techniques:Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis.5INTERNAL TEST 2 (MODULE 3 & 4)MODULE: 5Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement.5MODULE: 6Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.4	MODULE: 3 Research Design : N and Review, Identify Sampling fundamer concept, types and r	Meaning, Need and Types of research design, Literature Survey ying gap areas from literature review, Research Design Process, ntals, Measurement and scaling techniques, Data Collection – methods, Design of Experiments.	5		
INTERNAL TEST 2 (MODULE 3 & 4) MODULE: 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement. MODULE: 6 Modumentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.	MODULE 4: Quantitative Techniques: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression - Fundamentals of time series analysis and spectral analysis.				
MODULE: 5 Report Writing: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement. 5 MODULE: 6 A Documentation and presentation tools – LaTeX, Office with basic presentations 4	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.	MODULE: 5 Report Writing: Prin Methods of giving r Plagiarism, Citation	nciples of Thesis Writing, Guidelines for writing reports & papers, eferences and appendices, Reproduction of published material, and acknowledgement.	5		
	MODULE: 6 Documentation and skills, Use of Interne	MODULE: 6 Documentation and presentation tools – LaTeX, Office with basic presentations skills, Use of Internet and advanced search techniques.			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6193	COMPUTER APPLICATIONS LAB	0-0-2:1	2015

Application of Structural analysis & design software like STAAD and management software like SURETRACK. The student has to practice the packages by working out different types of problems.

Semester 2

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6102	BRIDGE ENGINEERING	3-1-0:4	2015

Pre-requisites:

Course Objectives:

- 1. To study the various bridge forms and typical loadings on the bridges.
- 2. To get familiarised with the design of short span bridges.

Syllabus

Planning of bridges, Design of girder bridges and bearings, Construction methods

Course Outcome:

The student will understand the design theories for super structure and substructure of bridges

and able to design Culvert, R.C.C T beam bridge

Text Books:

References:

 Raina V.K (1991), "Concrete Bridge Practice– Analysis, design & economics", Tata Mc–GrawHill, publishing company, New Delhi.
 Raina V.K (1988), "Concrete Bridge Practice– Construction Maintenance & Rehabilitation", Tata Mc–GrawHill, publishing company, New Delhi.
 Victor D.J (19991), "Essentials of Bridge Engineering", Oxford & IBH publishing company, New Delhi.
 Ponnuswami S (1993), "Bridge Engineering", Tata Mc–GrawHill, publishing company, New Delhi.
 Krishna Raju N (1996), "Design of Bridges", TataMcGrawHill, publishing company, New Delhi.

6.Relevant IS Codes, and IRC Codes.

COURSE CODE:	COURSE TITLE	CREDITS	
04 CE 6102	BRIDGE ENGINEERING	3-	1-0:4
	MODULES		Sem. Exam Marks (%)
MODULE 1:Investigation for bridges, need for investigation, selection of site, subsoil exploration, investigation report– importance for proper Investigation. Types of bridges, components of bridges		8	15
MODULE 2:Desigr and design of slab	n of RCC bridges– IRC loading, economical span, analysis bridges and box culvert.	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:T-bear girders and cross	n bridges– Analysis and design of deck slab, longitudinal girders–Pigeaud's method– Courbon's method	8	15
MODULE 4:Morice and Little method, Hendry–Jaegar method– prestressed concrete bridges(simply supported case only).		8	15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5: Impor for girder bridges- Appurtenances. S abutments- subst shallow footings -	rtance of bearings– bearings for slab bridges– bearings -Design of elastomeric bearings –Joints – ubstructure- different types- materials for piers and ructure design– piers and abutments – - well foundation	12	20
MODULE 6:Inspect studies of recently major bridges. Features of suspe	tion and maintenance and construction of bridges-case y constructed major bridges-critical studies of failure of nsion bridges and cable stay bridges.	12	20
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6104	FINITE ELEMENT ANALYSIS	3-0-0: 3	2015

Course Objectives:

To make the Student:-

- understand the general plate bending theories
- obtain an understanding of the fundamental theory of FEA
- develop the ability to generate the governing differential equations

Syllabus

Introduction to FEM -General procedure of FEA - Displacement approach-Variational principles-Derivation of Shape functions-Convergence criteria - Conforming & nonconforming elements-Derivation of Stiffness matrix-axisymmetric problems Isoparametric elements - Numerical Integration.- Gauss-Quadrature General plate bending elements-Plate bending theory – Kirchhoff's theory – Mindlin's theory – locking problems - -spurious modes.

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understandthe fundamental concepts of theory of FEA and will be able use the basic finite elements for structural applications using truss, beam, frame and planeelements

COURSE CODE:	COURSE CODE: COURSE TITLE		DITS		
04 CE 6104	FINITE ELEMENT ANALYSIS	3-0)-0:3		
MODILLES		Contact	Sem. Exam		
	WODULIS	Hours	Marks (%)		
MODULE 1:Introd	MODULE 1:Introduction to FEM				
		6	15		
Historical develo	pment - Idealization of structures-Mathematical				
Model - General p					
MODULE 2:Variat	ional Approaches to FEM				
Variational princi	nles weighted residual approach and method of	6	15		
virtual work. Deriv	vation of equilibrium equations.				
	INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3:Shape	functions				
Introduction to S	hape Functions-characteristics-Derivation of Shape	7	15		
functions using					
Interpolation–Ger	neralised coordinates–Natural coordinates				
MODULE 4:Stiffne	ess matrix				
Derivation of Stiff	ness matrix of Bar element - Beam element - Plane				
stress and plane	e strain and axisymmetric problems -Triangular	7	15		
elements - Const	ant Strain Triangle - Linear Strain Triangle – using				
generalized coord					
INTERNAL TEST 2 (MODULE 3 & 4)					
MODULE 5:Conve	rgence Criteria & Numerical Integration				
Compatibility C°a	nd C ¹ alamants Convergance criteria. Conforming				
& nonconforming	alements - Convergence citteria - Comorning				
a noncontonning	endonsation Isonarametric elements Numerical	8	20		
Integration - Gauss- Quadrature - Computer implementation of					
finite element me	thed				
	al relate handing elements				
WODULE D:Gener	ai plate bending elements				
Plate bending theory – Kirchhoff's theory – Mindlin's theory –		8	20		
locking problems	- preventive measures – reduced integration –	-	-		
selective integrati	on-spurious modes				
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6106	Theory of Plates and Shells	3-0-0: 3	2015

Course Objectives:

- To provide an elementary knowledge of mechanics of materials and mathematics
- To provide a simple and comprehensive mathematical analysis of plate theories and their application to plate bending problems
- Give an insight into the behavior of the plate structure, maintaining a fine balance between analytical and numerical methods
- To provide a knowledge of the fundamentals of theory of shells and folded plates

Syllabus

Plates: Introduction; Pure bending of plates; Laterally loaded rectangular plates; Simply supported rectangular plates under sinusoidal load; Circular plates. Shells: Introduction; Classical theory of shells. Folded plates: Fundamental concepts.

Course Outcome:

- Students will be able to apply fundamental concepts of mechanics of materials and mathematics to practical engineering problems.
- Students will be able to determine the properties and behavior of plates and shells

Text Books:

- 1. S.P Timoshenko, S.W Krieger (2001), "Theory of plates and shells", McGraw Hill, New York
- 2. Lloyd Hamilton Donnell (1976), "Beams, plates and shells", McGraw Hill, New York.

- 1. Owen F Hughes (1983), "Ship structural design", John Wiley & Sons, New York
- 2. G.S. Ramaswamy (1986), "Design and Construction of Concrete Shell Roofs", Tata McGraw Hill Book Co.Ltd
- 3. Krishna Raju N. (1998), "Advanced Reinforced Concrete Design", CBS Publishers and distributers, New Delhi

COURSE CODE: COURSE TITLE		_		
04 CE 6106	04 CE 6106 Theory of Plates and Shells		0-0:3	
MODULES		Contact	Sem. Exam	
	MODOLLS	Hours	Marks (%)	
MODULE 1:1Plates				
Introduction – clas	Introduction – classification of plates – thin plates and thick plates –			
assumptions in the	e theory of thin plates – differential equation for	/	15	
cylindrical bending of rectangular plates				
MODULE 2:Pure be	nding of plates			
Slope and curvatur	re of slightly bent plates – relation between bending	7	15	
moment and curva	ature in pure bending – stresses acting on a plate	/	13	
inclined to x and y-	axes – particular cases of pure bending of rectangular			
plates.				
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3:Laterally	y loaded rectangular plates			
Small deflections of	f laterally loaded thin plates – differential equation of			
plates – derivation	n of fourth order differential equation – solution	7	15	
techniques for four	th order differential equation – boundary conditions –			
simply supported, b	puilt – in and free edges			
MODULE 4:Simply	/ Supported rectangular plates under sinusoidal			
LoadNavier solution	n for simply supported plates subjected to uniformly	_		
distributed - Levy's	s solution for simply supported rectangular plates-	/	15	
uniformly distribute	ed and concentrated load			
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Circular	plates			
Polar coordinates	- differential equation of symmetrical bending of	8	20	
laterally loaded cli	rcular plates- uniformly loaded circular plates with	-		
clamped edges and	simply supported edges– circular plates loaded at the			
	I theory of Shalls			
	i theory of shells			
Structural behavior	r of thin shells - Classification of shells - Singly and			
doubly curved shells with examples- Membrane theory and bending			20	
theory of doubly cu	rved shellsequilibrium equations.			
Folded plates late	aduction Classification Structural action and analysis			
i olucu plates – iliti				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6108	Structural Optimisation	3-0-0: 3	2015

• **Course Objectives**: To introduce the fundamentals of optimization concepts, their applications in the structural engineering field andto study the linear programming methods of the optimization.

Syllabus

Introduction and Problem formulation with examples;Single Variable Unconstrained Optimisation

Techniques , Multi Variable Unconstrained Optimisation

Techniques, Constrained Optimisation Techniques; Classical methods and Specialized Optimisation

techniques.

Course Outcome:

The student will be able to apply the basic ideas in optimization to make the structures as lightly as possible and also apply the linear programming techniques in engineering optimization

Text Books:

- 1 .Rao S. S., "Engineering Optimisation Theory and Practice", New Age International.
- 2. Deb, K., "Optimisation for Engineering Design Algorithms and examples", Prentice Hall.
- 3. Kirsch U., "Optimum Structural Design", McGraw Hill.
- 4. Arora J S. "Introduction to Optimum Design", McGraw Hil

COURSE CODE:	COURSE CODE: COURSE TITLE CREDITS		EDITS
04 CE 6108	Structural optimisation	3-0-0:3	
	MODULES		Sem. Exam
	MODOLLS	Hours	Marks (%)
MODULE 1: Introd	duction – Problem formulation with examples; Single		
Variable Unconstr	ained Optimisation Techniques – Optimality Criteria;	7	15
Bracketing metho	ds– Unrestricted search, Exhaustive search		
MODULE 2:Regio	n Elimination methods:-Interval Halving methods,		
Dichotomous s	earch, Fibonacci method, Golden section		
method;Interpola	tion methods–Quadratic Interpolation method,	7	15
Cubic Interpolati	on method;Gradient Based methods– Newton–		
Raphson method,	Secant method, Bisection method.		
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Multi	Variable Unconstrained Optimisation Techniques -		
Optimality Criteri	a; Unidirectional Search ; Direct Search methods –		
Random search, G	Frid search, Univar ate method, Hooke's and Jeeves'	7	15
pattern search me	pattern search method, Powell's conjugate direction method, Simplex		
method;			
MODULE 4:Gradi	ent based methods-Cauchy's (Steepest descent)		
method, Conjuga	te gradient (Fletcher–Reeves) method, Newton's	7	15
method, Variable	metric (DFP)method, BFGS method.		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Const	rained OptimisationTechniques;Classical methods -		
Direct substitution	n method, Constrained variation method, method of		
Lagrange multipli	ers, Kuhn–Tucker conditions. Linear programming		
problem: Standa	rd form, Simplex method; Indirect methods –	7	20
Elimination of co	nstraints, Transformation techniques, and Penalty		
function method;	Direct methods – Zoutendijk's method of feasible		
direction, Rosen's	gradient Projection method.		
MODULE 6:Spee	cialized Optimisation techniques – Dynamic		
programming, Geo	ometric programming, Genetic Algorithms.	7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6112	Advanced Analysis Of Structures	3-0-0: 3	2015

Course Objectives:

- 1. Study about Fundamental concepts of flexibility and stiffness matrices for the single and two coordinate system.
- 2. Study about Indeterminate structures and transformation of stiffness and flexibility matrices from system coordinate to element coordinate

Syllabus

Review of work and energy principles - Maxwell, Betti, Castiglianotheorems, static& kinematic indeterminacy Stiffness method, Structure stiffness matrix, ElementFlexibility matrix- equilibrium-compatibility-analysis of beams & frames (rigid and pin jointed), grids

Course Outcome:

Students will be able understand the basic concept of flexibility & stiffness, principle of superposition and methods of structural analysis and they will be Able to transform the unknown from system coordinates to element coordinates

References:

- 1. Mukhopadhyay M., "Matrix Finite Element Computer and Structural Analysis", Oxford & IBH, 1984.
- 2. Weaver & Gere, "Matrix Analysis of Structures", East West Press.
- 3. Moshe F Rubinstein– "Matrix Computer Analysis of Structures"– Prentice Hall, 1969.
- 4. Meek J.L., "Matrix Structural Analysis", McGraw Hill, 1971.
- 5. Reddy C.S., "Basic Structural Analysis", Tata McGraw Hill Publishing Co.1996.
- 6. Smith J.C. "Structural Analysis", Macmillian Pub.Co.1985.
- 7. Rajesekharan&Sankarasubramanian,G., "Computational Structural Mechanics", Prentice Hall of India, 2001.
- 8. Mukhopadhyay M., "Matrix Finite Element Computer and Structural Analysis", Oxford & IBH, 1984.
- 9. Wang C.K.& Solomon C.G.," Introductory Structural Analysis", McGraw Hill.1968.
- 10. Pezemieniecki, J.S, "Theory of Matrix Structural Analysis", McGraw Hill Co., 1984.
- 11. Seeli F.B.& Smith J.P., "Advanced Mechanics of Materials", John Wiley & Sons, 1993.
- 12. Norris & Wilbur, "Elementary Structural Analysis", McGraw Hill.

<mark>к-</mark>и

DamodarMaity, "Computer Analysis of Framed Structures", I K International

COURSE CODE:	COURSE TITLE	CREDITS			
04 CE 6112	Advanced Analysis Of Structures	3-0-0:3			
MODULES			Sem. Exam Marks (%)		
MODULE 1:Matrix Maxwell, Betti, Ca	x methods-Review of work and energy principles - astigliano theorems- principles virtual work	8	15		
MODULE 2:Classification of structures–discrete structures– elements–nodes–degrees of freedom–static& kinematic indeterminacy Stiffness method–coordinate systems–element stiffness matrix.		8	15		
	INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3:Stiffness method – analysis of pin jointed frames (temperature effect, lack of fit), continuous beams (settlement of supports), rigid jointed frames and grids.			15		
MODULE 4:Direct stiffness approach-Structure stiffness matrix– assembly–equivalent joint load – incorporation of boundary conditions –solutions–Gauss elimination–matrix inversion–analysis of pin jointed frames, continuous beams.		7	15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5:Eleme force transformat	7	20			
MODULE 6:Analys	sis of beams & frames (rigid and pin jointed), grids.	7	20		
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6114	COMPUTER AIDED DESIGN	3-0-0:3	2015

1. **Course Objectives**: To familiarise with graphic primitives, transformations and 2-D drafting of computer graphics.

2.To get practiced with computer methods of structural analysis

Syllabus

History and overview of CAD– advantages of CAD over manual drafting and design ,Popular CAD packagesConstruction activities:- The critical path method- General application software's- Civil engineering packages

Course Outcome:

The student will be familiarized with 2 D drafting and can use drafting software. And they can perform structural analysis using analysis package

Text Books:

- References: Sujith Kumar Roy &SubrataChakrabarty, "Fundamentals of Structural Analysis", S Chand \$ Company Ltd., New Delhi.
- B.Sengupta& H. Guha, "Construction Management and Planning", Tata McGraw Hill Publishing Co. Ltd, New Dehi.
- R.L Peurifoy, "Constuction Planning, Equipment and methods", Tata McGraw Hill Publishing Co. Ltd, Kogakusha.
- 4. Mikell P. Groover&Emroy W Zimmers, Jr, "CAD/CAM Computer Aided Design and Computer Aided Manufacturing"
- 5. L S Sreenath, CPM PERT.
- C.S. Krishnamoorthy, S.Rajeev, A Rajaraman, "Computer Aided Design Software and Analytical Tools", Narosa Publishing House, New Delhi

COURSE CODE:	COURSE TITLE	CREDITS	
04 CE 6114	COMPUTER AIDED DESIGN	3-0-0:3	
	MODULES		Sem. Exam Marks (%)
MODULE 1:Histor	y and overview of CAD- advantages of CAD over		
manual drafting a			
and workstation,	and workstation, elements of interactive graphics, input/out put		
display, storage d	evices in CAD, and an overview of CAD software –		
2D Graphics, 3D G	iraphics.		
MODULE 2:Popula	ar CAD packages, Type of structure, Unit systems,		
structure geomet	ry and Co-ordinate systems - global co- ordinate	-	. –
system, Local co-o	ordinate systems – Relationship between Global and	6	15
Local co-ordinate	systems Edit Input-Command Formats-Text Input		
INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3:Graph	nical Input Generation-"Concurrent" Verifications-	7	15
Library Geometry	/	15	
MODULE 4:Construction activities:- The critical path method-			
Definitions of ter	ms and symbols- Steps in critical path scheduling-	7	15
Developing a cr	itical path schedule - Determining free float-	,	15
Determining total	cost of project		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Man	ual versus Computer analysis of critical path	0	20
methods–Popular	packages in Construction Management and MIS.	8	20
MODULE 6:Infor	mation types and uses:- General application		
software's- Civil	engineering packages, Project management		
software, advan	ced structural engineering software's, Expert	8	20
systems for const	ruction.		
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
	MICROSTRUCTURE AND		
04 CE 6116	INNOVATIONS IN STRUCTURAL	3-0-0: 3	2015
	CONCRETE		

• **Course Objectives**: To prepare the graduates as best civil engineers with an excellent comprehension of fundamental of concrete structures at micro & macro levels and to make the graduates best fit in the concrete construction industry by providing knowledge in advanced topics like application of SEM,Non destructive testing methods

Syllabus

The Structure of Concrete, Structure property relationships in hydrated cement paste, Transition zone in concrete, Self-compacting Concrete, Engineering Properties, Effect of Temperature on Concrete, Important material properties of concrete under temperature, Supplementary Cementitious Materials, Characterization of Concrete (Concept Only)

Course Outcome:

• Able to recognize the mechanism of degradation of concrete structures and conduct preliminary forensic assessment of deteriorated concrete structures and the ability to monitor the non destructive evaluation of concrete structures

Text Books:

- 1. **References**: P. Kumar Mehta and Paulo J. M. Monteiro, "Concrete, Microstructure, Properties and Materials" Indian Concrete Institute, Chennai.
- 2. J.A. Purkiss, "Fire Safety Engineering" Butterworth-Heinemann.
- 3. E.G. Butcher and A.C. Parnell, "Designing for Fire Safety" John Wiley and Sons.
- 4. E.E. Smith and T.Z. Harmathy, "Design Buildings for Fire Safety" ASTM Special Technical Publication 685, A Symposium Sponsored by ASTM Committee EQ5 on Fire Standards.
- 5. A.M. Neville, "Properties of Concrete" Addison Wesley Longman Limited, England.
- 6. A.M. Neville and J.J. Brooks, "Concrete Technology" Pearson Education, Asia.
- 7. P.C. Varghese, "Advanced Reinforced Concrete Design" PHI Learning Private Limited, New Delhi.
- 8. EFNARC, "The European Guidelines for Self-Compacting Concrete, Specification, Production and Use" EFNARC-2005, UK.
- 9. P.J.M. Bartos, M. Sonebi and A.K. Tamimi, "Workability and Rheology of Fresh Concrete: Compendium of Tests" RILEM Publications S.A.R.L, France.
- 10. V.S. Ramachandran and James J., "Handbook of Analytical Techniques in Concrete Science and Technology, Principles, Techniques and Applications" William Andrew Publishing, U.S.A.
- 11. George Widmann, "Interpreting TGA Curves" User Com.

COURSE CODE:	COURSE TITLE	CRE	DITS
04 CF 6116	MICROSTRUCTURE AND INNOVATIONS IN	3-0-0:3	
	STRUCTURAL CONCRETE		
MODULES		Contact Hours	Sem. Exam Marks (%)
MODULE 1:The S	tructure of Concrete: -Significance and Complexities,		
Structure of agg	regate phase, Structure of hydrated cement paste,		
Solids in hydrated	d cement paste, Voids in hydrated cement paste and	6	15
Water in hydrated	d cement paste.	·	
Structure proper	Structure property relationships in hydrated cement paste:-Strength,		
Dimensional stabi	lity and Durability		
MODULE 2:Transi	tion zone in concrete: -Significance of transition zone,		
Structure of trans	sition zone, Strength of transition zone and Influence		
of transition zone	on properties of concrete.		
Self-compacting	Concrete:-Introduction, Definition and terms like	6	
Addition, admixtu	ire, Binder, Filling ability, Fines (Powder), Flow ability,	6	15
Fluidity, Passing a	bility, Robustness, Segregation resistance, Slump-flow,		
Inixotrophy, Visc	osity modifying admixture, constituent materials, Mix		
design, rest meth			
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Engi	neering Properties:-Compressive strength, Tensile		
strength, Modulu	s of elasticity, Creep, Shrinkage, Coefficient of thermal		
expansion, Bond	to reinforcement, Shear force capacity, Fire resistance		
and durability.		7	15
Requirements:- B	asic and Additional requirements and Requirements in	/	13
fresh state, Consis	stence classification, Slump flow, Viscosity, Passing		
ability and Segreg	ation resistance.		
MODULE 4:Effect	of Temperature on Concrete:-Stressed, Unstressed		
and Unstressed re	esidual test methods.		
Important materia	al properties of concrete under temperature:-Thermal	_	. –
expansion, Therm	al conductivity, Thermal capacity and thermal	7	15
diffusivity, Modul	us of elasticity, Poisson's ratio, Stress-strain		
relationship and 0	Creep deformation		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Stren	gth: -Compressive and Tensile. Influence of aggregate		
type.		8	20
Supplementary C	ementitious Materials:-Different materials, Pozzolanic	0	20
reaction.			
MODULE 6:Char	acterization of Concrete (Concept Only):- X-Ray		
Diffraction Analys	sis (XRD):- Introduction, Basic Principle, Identification	8	20
of Major Phases I	Present in Cement/Clinker, Sample Preparation and X-		

³⁵ APJ Abdul Kalam Technological University |Cluster 4|M.Tech in Computer Aided Structural Engineering

Ray Diffractometry in Concrete, Hydrated Cement Paste, Aggregate		
Interface.		
Scanning Electron Microscope (SEM) Analysis: Introduction of Scanning		
Electron Microscopy, Specimen Preparation, Concrete under the SEM,		
Mineral Admixtures in Concrete.		
Thermo Gravimetric Analysis (TGA): -Introduction, Interpreting TGA		
Curves related to Concrete.		
END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6118	ADVANCED STEEL STRUCTURES	3-0-0: 3	2015

Course Objectives: To give the Student:-

- To study and design members subjected to lateral loads and axial loads
- To focus on the study and design of various steel towers and steel chimneys& light gauge steel structures.

Syllabus

Design of members subjected to lateral loads and axial loads ,Crane gantry girders and crane columns,Bracing of industrial buildings and bents.,Analysis and design of steel towers,Self supporting and guyed stacks lined and unlined,Stresses due to wind and earthquake forces – Design of foundations– Moment redistribution Static, Kinematic and uniqueness theorems – Combined mechanisms Connections, moment resisting connectionsDesign of light gauge sections ,Types of connections

Course Outcome:

• Students who successfully complete this course will gain knowledge of designing different types of steel members.alsodesigning light gauge steel structures

Text Books:

- 1. **References**: Punmia B.C, "Comprehensive Deign of Steel structures", Laxmi publications Ltd, 2000.
- 2. Arya, A.S, "Design of Steel Structures", Newchand& bros, Roorkee, 1982
- 3. Ram Chandra, "Design of Steel Structures II", Standard Book House, Delhi.
- 4. Dayaratnam, "Design of steel structures".
- 5. Rajagopalan, "Design of Storage structures".
- 6. Baker, "Steel skeleton".
- 7. S.K.Duggal , "Design of Steel Structures", McGraw Hill.

COURSE CODE:	COURSE TITLE	CRED	DITS
04 CE 6118	ADVANCED STEEL STRUCTURES	3-0-0	0:3
MODULES		Contact Hours	Sem. Exam Marks (%)
MODULE 1:Design loads	n of members subjected to lateral loads and axial	6	15
MODULE 2:Princi	ples of analysis and design of Industrial buildings		
and bents – Crar	e gantry girders and crane columns – Bracing of	6	15
industrial building	s and bents.	Ū	
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Analys Design of industri and unlined – Stre of foundations	sis and design of steel towers, trestles and masts – al stacks – Self supproting and guyed stacks lined esses due to wind and earthquake forces – Design	7	15
MODULE 4:Introduction – Shape factors – Moment redistribution Static, Kinematic and uniqueness theorems – Combined mechanisms – Analysis Portal frames. Method of plastic moment distribution – Connections, moment resisting connections		7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Design of light gauge sections – Types of cross sections – Local buckling and post buckling – Design of compression and Tension members – Beams – Deflection of beams – Combined stresses and connections.		8	20
MODULE 6:Type connections, Seat connections, Cor continuous beam-	es of connections, Design of framed beam ted beam connection, Unstiffened, Stiffened Seat ntinuous beam – to – beam connections and -to–column connection both welded and bolted END SEMESTER EXAM	8	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6122	DESIGN OF SUBSTRUCTURES	3-0-0: 3	2015

Course Objectives: To give the Student:-

- To impart knowledge on the types and purposes of different foundation systems and structures
- To provide students with exposure to the systematic methods for designing foundations

Syllabus

Substructures,RaftFoundations,PileFoundations,Load capacity of single piles Pier Foundations,Types of piers and Uses ,Well Foundations,Types – Construction of Wells Substructures in Expansive soils

Course Outcome:

• Students who successfully complete this course willbe able to understand the nature of soil condition and design the foundation structure and also to analyze, design detailing, estimation and costing of Structural components with high level of competency

Text Books:

- 1. **References**: J.E.Bowles, "Foundation Analysis and Design", Mc. Graw Hill Publishing Co., New
- 2. York
- 3. 2. Tomlinson, "Pile Design and Construction Practice", A View Point Publication.
- 4. 3. Swami Saran, "Design of Substructures", Oxford & IBH publishers, New Delhi.
- 5. 4. W.C. Teng, "Foundation Design", Prentice Hall of India, New Delhi .
- 6. 5. Ninan P. Kurian "Modern Foundations".
- 7. 6. Lamb & Whileman "Soil Mechanics

COURSE CODE:	COURSE TITLE	CRE	DITS
04 CE 6122	DESIGN OF SUBSTRUCTURES	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Substi Design loads – design of sub stru	ructures-Definition and Purpose – Design principles – Permissible settlements –Considerations in seismic ctures	6	15
MODULE 2:Raft settlement of raft of rafts	Foundations-Types of raft – Bearing capacity and ts – Beams on elastic foundation –Methods of design	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Pile Fo dynamic formulae loaded piles. Pile groups – Grou single and pilegro single and pile gro	oundations-Load capacity of single piles – Static and e – Pile load tests – Cyclic pileload tests – Laterally up Efficiency – Design of pile groups – Settlement of ups in clays and sands – Negative skin friction on oups	7	15
MODULE 4:Pier bearing capacity -	Foundations-Types of piers and Uses – Allowable - Design and construction of Piers –Settlement of Piers	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Well and Remedies – stability – sinking	FoundationsTypes – Construction of Wells – Failures Bearing capacity Design of wellfoundations – Lateral of wells.	8	20
MODULE 6:Substr soils – Foundatio Foundations – De	ructures in Expansive soilsCharacteristics of Expansive on problems – Foundation alternatives –Methods of sign and Construction of under reamed piles END SEMESTER EXAM	8	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6124	EARTHQUAKE RESISTANT DESIGN	3-0-0: 3	2015

Course Objectives: To give the Student:-

To assists inanalyzing the interaction between civil infrastructure and the ground, including the consequences of earthquakes on structures.
 For the proper design and construction of buildings in accordance with building codes, so as to minimize damage due to earthquakes

Syllabus

Engineering Seismology ,Dynamics of Structures (SDOFS/ MDOFS), Response Spectra Structural Systems -Types of Buildings, Causes of damage, Earthquake Resistant Earthen Buildings, Earthquake Resistant Masonry Buildings -Design consideration –Guidelines Lateral load analysis -Design and detailing ,Shear wall Capacity based design

Course Outcome: Students who successfully complete this course will be exposed to proper design of buildings so they will resist damage due to earthquakes, but at the same time not be unnecessarily expensive

Text Books:

References: PankajAgarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2006.

- 2. S K Duggal, "Earthquake Resistant Design of Structures", Oxford University Press, 2007.
- 3. Course Notes "Design of Reinforced Concrete Buildings", IIT Kanpur, June 1999

COURSE CODE:	COURSE TITLE	CREDITS		
04 CE 6124	EARTHQUAKE RESISTANT DESIGN	3-0-0	:3	
MODULES		Contact Hours	Sem. Exam Marks (%)	
MODULE 1:Engine	eering Seismology (Definitions,Introduction to			
Seismic hazard, Ea	arthquake Phenomenon), Seismotectonics and			
Seismic Zoning of	India, Earthquake Monitoring and Seismic	7	15	
Instrumentation,	Characteristics of Strong Earthquake Motion,			
Estimation of Eart	hquake Parameters, Microzonation			
MODULE 2:Dynan	nics of Structures (SDOFS/ MDOFS), Response			
Spectra -Average	Response Spectra -Design Response			
Spectra, Evaluation	n of Earthquake Forces as per codal provisions,	7	15	
Effect of Earthqua	ike on Different Types of Structures, Lessons	-		
Learnt From Past Earthquakes				
INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3:Struc	tural Systems -Types of Buildings, Causes of			
damage, Plannin	g Considerations, Philosophy and Principle of	c	1 5	
Earthquake Resis	tant Design, Guidelines for Earthquake Resistant	0	13	
Design				
MODULE 4:Eartho	quake Resistant Earthen Buildings, Earthquake			
Resistant Masonr	y Buildings -Design consideration –Guidelines.	8	15	
Earthquake Resi	stant Design of R.C.C. Buildings -Material			
properties				
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Latera	l load analysis -Design and detailing – Rigid			
Frames				
Shoor wall Cou	alad Shaar wall. Mathematical modeling of	7	20	
-Silear wall -Coup	uildings Canacity based design			
	ananigs -capacity based design.			
MODULE 6:Vibrat	ion Control -Tuned Mass Dampers –Principles and			
application, Basi	c Concept of Seismic Base Isolation -various	7	20	
Systems-Case Stu	dies, Important structures			
END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6126	EXPERIMENTAL STRESS ANALYSIS	3-0-0: 3	2015

Course Objectives: To give the Student:-

- Able to demonstrate basic understanding of experimental methods commonly used in solid mechanics.Eg- Strain gauge, photo elasticity, image correlation etc
- To familiarize the students with various strain measurements and non destructive testing techniques

Syllabus

Strain measurement: mechanical, optical acoustical strain gauges– linear variable differential transformer (LDVT), Photo elasticity – Light and optics as related to photoelasticity. Methods of measuring sensitivity like cantilever calibration, determination of ultimate strength, refrigeration techniques, Introduction to moiré fringe techniques of stress analysis.

Course Outcome:

• Students who successfully complete this course willbeable to use strain gauges and its principles also to understand the non destructive testing methods

Text Books:

- 1. Dalley and Rilley, "Experimental Stress Analysis".
- 2. P.H. Adams & R.C. Dove, "Experimental Stress Analysis and motion Measurement".
- 3. M. Hetney, Hand book of experimental stress analysis.

COURSE CODE:	COURSE TITLE	CR	EDITS
04 CE 6126	04 CE 6126 EXPERIMENTAL STRESS ANALYSIS		0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Strair gauges. Electrical	MODULE 1:Strain measurement: mechanical, optical acoustical strain gauges. Electrical resistance strain gauges, strain rosettes.		15
MODULE 2:Meas variable differenti	urement of displacements – potentiometers – linear al transformer (LDVT), Accelerometeres,	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Meas based: Ring type f	urement of force : Load cells, Electrical resistance force transducer, pressure transducer	8	15
MODULE 4:Photo elasticity – Light and optics as related to photoelasticity, theory of photo elastic model materials, analysis techniques. Separation and compensation methods.Introduction to 3– dimensional photoelasticity.			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Methods of measuring sensitivity like cantilever calibration, determination of ultimate strength, refrigeration techniques, relaxation techniques, double crack analysis of brittle coating data		7	20
MODULE 6: Introduction to moiré fringe techniques of stress analysis			20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6194	STRUCTURAL ENGINEERING LAB	0-0-2:1	2015

- 1. Mix design of concrete of different grades and using admixtures.
- 2. Tensile and flexural strength of concrete of different grades.
- 3. Testing of simply supported RCC beams for flexural failure.
- 4. Testing of simply supported RCC beams for shear failure.
- 5. Study on the behavior of prestressed concrete beam.
- 6. Testing of simply supported RCC beam for combined bending and shear failure.
- 7. Testing of RCC column.
- 8. Non-destructive testing of concrete including rebound hammer and ultrasonic pulse method.
- 9. Structural Dynamics:
 - i. Free vibration analysis of cantilever beam.
 - ii. Free vibration analysis of simply supported beam.
 - iii. Free vibration analysis of simply supported beam with tuned mass.

Note: Students should design the concrete mix and cast RCC and PSC beams. Calculate the theoretical loads and conduct experiments on the beams. Measure load, deformation and strain and plot load-deformation curve and moment-curvature relationship.

SEMESTER 3

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7101	DESIGN OF CYLINDRICAL SHELL AND	3-0-0: 3	2015
	FOLDED PLATES		2015

Pre-requisites:

Course Objectives: The Student will be able to:-

- To classify and analyse the different type of shell structures
- To classify and analyse the different type of folded plates

Syllabus

Classification of shells, Design of cylindrical shell, Design of shells with double curvature, Design of paraboloid shells, Types of Hyperbolic paraboloids, Analysis of the edge members, Folded plate, Design of reinforcements in folded plates and supporting diaphragms

Course Outcome:

• Students who successfully complete this course will be able to analyse various shells and understand the behaviour of folded plates.

Text Books:

1) **References**: P.C.Varghese., "Design of reinforced concrete shells and folded plates" - PHI-New Delhi - 2010

- 2) Krishna Raju .N., "Advanced Reinforced concrete Design". CBS Publishers and distributor New Delhi-2003
- 3) Ramaswamy G.S., "Design and construction of concrete shell roofs" CBS Publishers
- 4) Chatterjee B.K., "Theory and Design of concrete shell"- Chapman & Hall
- 5) Bandhopadhyay., "Thin shell structures" New age International Publishers New Delhi
- 6) Chandrasekhar., " Analysis of thin concrete shells" New age International Publishers- New Delhi.

COURSE CODE:	COURSE TITLE	CF	REDITS
04 CE 7101	DESIGN OF CYLINDRICAL SHELL AND FOLDED	3	-0-0:3
	PLATES		
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Gene	ral classification of shells - shells of revolution -		
translational she	ells - ruled surfaces - folded plates (hipped	7	15
plates).Gausian cu	urvature – thin – thick shells – long shells – short shells	,	15
 Design of cylind 	rical shell based on membrane theory		
MODULE 2:Desig	n of cylindrical shell with edge beams-Design of		
transverse stiffne	rs of long shells. Design of shells with double curvature	7	15
 Design of spheri 	cal domes		
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Memb	orane analysis-Analysis of domes with skylight – Design		
of ring beams (ed	ge member)- Design of conical shells - conical dome	7	15
roof with ring bea	ms.		
MODULE 4:Desig	gn of paraboloid shells-(shells formed from two		
parabolas). Types	of Hyperbolic paraboloids – Types of hyper shells with		15
straight rectangul	ar edges – shallow and deep H.P shells		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Analy	sis of shell part of shallow hyper shells with straight		
edges-Analysis of	f the edge members. Folded plate – introduction-	7	20
methods of analysis – complete analysis of folded plates			
MODULE 6: Design of reinforcements in folded plates and supporting			
diaphragms – Design of steel for transverse moments- Design of			
longitudinal steel.		7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7103	Design Of Steel Concrete Composite Structures	3-0-0: 3	2015

Course Objectives: The Student will be able to:-

- To get introduced to composite construction and composite behavior of steel concrete composite structures.
- To obtain the knowledge to conceptualize and design the composite structures

Syllabus

Introduction to steel - concrete composite construction, Design of composite beams, slabs, columns, beam – columns, Design of connections in the composite structures, Behaviour of box girder bridges, Case studies

Course Outcome:

• Students who successfully complete this course will possess knowledge of the composite behavior of structures and have the ability to design various composite structural elements

Text Books:

References:

1. Johnson R.P., "Composite Structures of Steel and Concrete", Blackwell Scientific Publications, UK, 2004.

2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Pergamon press, Oxford, 1995.

3. Proceedings of Workshop on "Steel Concrete Composite Structures", Anna University, 2007

COURSE CODE:	COURSE TITLE	CRI	DITS	
04 CE 7103	Design Of Steel Concrete Composite Structures	3-()-0:3	
	MODULES		Sem. Exam Marks (%)	
MODULE 1:Introd theory of compos	uction to steel - concrete composite construction - ite structures -construction.	7	15	
MODULE 2:Desigr	n of composite beams, slabs, columns	7	15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3:Desigr trusses.	n of beam – columns - design of composite	7	15	
MODULE 4:Types of connections, Design of connections in the composite structures –shearconnections. Degree of shear connection – Partial shear interaction		7	15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Introd concepts. Case studies on st	uction - behaviour of box girder bridges - design eel - concrete composite construction in buildings	7	20	
MODULE 6:seismi	c behaviour of composite structures.	7	20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7105	DESIGN OF TALL BUILDINGS	3-0-0: 3	2015

Course Objectives: The Student will be able to:-

- Plan tall buildings considering structural systems, fire rating, local considerations etc
- Evaluate loading for tall structures · Analyze and design of tall structural systems including structural connections

Syllabus

Design Philosophy, Gravity loading, Earthquake loading, Behaviour of High rise structures, Analysis and Design principles of various horizontal load transfer systems, Stability Analysis

Course Outcome:

- At the end of this course the student will be able toKnow design principles and different types of loading
- Describe the various structural systems used in the construction of Tall structures

Text Books:

References:

Taranath.B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill Co. 1988.

2.Schuller.W.G." High Rise Building Structures", John Wiley & sons, 1977.

3.Lynn.S.Beedle,"Advances in tall Buildings", CBS Publishers and Distributors, New Delhi, 1986.

4.Lin T.Y and StotesBurry.D,"Structural concepts and systems for Architects and Engineers", John Wiley and Sons, 1988.

5.Dr.Gupta.Y.P,Editor,"Proceedings of National Seminar on High Rise Structures-Design and Construction practices for Middle Level Cities",Nov-14-16,1955.New Age International Publishers Ltd.,Chennai.

6.Smith.B.S and Coull.A.,"Tall Building Structures", Analysis and Design', John Wiley&sons, inc., 1991

COURSE CODE:	COURSE TITLE	CRED	ITS
04 CE 7105	DESIGN OF TALL BUILDINGS	3-0-0	0:3
	MODULES	Contac t Hours	Sem. Exa m Mark s (%)
MODULE 1:Desigr concepts-essentia disposal-service s height, growth an	n Philosophy-History-advantages and disadvantages-Vertical city I amenities-Fire safety-water supply-drainage and garbage systems-structural and foundation systems. Factors affecting d form-Human comfort criteria	7	15
MODULE 2:Gravit construction loads wind tunnel exper	y loading-Dead and live load-calculation-Impact and s. Wind loading-static and dynamic approach-Analytical and rimental method.	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Earth combination of buildings-High stru Composite materi	nquake loading-Equivalent lateral force, Modal analysis- loading in various design philosophies. Materials for tall ength concrete-Light weight concrete-Fibre reinforced concrete als.	7	15
MODULE 4:Behavior of High rise structures-Different system for load distribution in steel and concrete-Vertical and horizontal load resistant systems-Rigid frames- braced frames-infilled frames-shear walls-Wall frames-tubular systems-outrigger braced systems-Mega systems.		7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Analy systems-approxim Member forces-c shrinkage and tem	sis and Design principles of various horizontal load transfer nate methods-Modelling for accurate analysis-3D analysis- lisplacements. Analysis for various secondary effects-Creep, nperature	8	20
MODULE 6:Stability Analysis-Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity loading, P-effect and various methods of analysis –influence of foundation instability, out of plumb effects-Elastic Deformations.Dynamic Analysis-Principles of design of tall braced frames for earthquake and blast resistant design.			20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7107	Experimental Techniques And Instrumentation	3-0-0: 3	2015

Course Objectives: To give the Student:-

- To access the errors in measurement and learn the principles of measurement using various electronic and physical testing machines.
- To test various civil engineering structures using non-destructive testing methodologies

Syllabus

Choice of Experimental stress analysis methods, Characteristics of Structural Vibrations, Photo elasticity - principle and applications. Principles of Pressure and flow measurements , Diagnosis of distress in structures – crack observation and measurements –corrosion of reinforcement in concrete

Course Outcome:

• Students who successfully complete this course will be able to choose the methodology of measuring errors and strains and calibrate the machineries and equipment used in the laboratory. They can also perform advanced NDT methods in accessing the load testing of structures.

Text Books:

References:

1. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 1996

2. Dalley .J.W and Riley.W.F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y. 1991

3. Srinath.L.S, Raghavan.M.R, ingaiah.K, Gargesha.G, Pant.B and

Ramachandra.K, "Experimental Stress Analysis", Tata McGraw Hill Company, New Delhi, 1984

4. Sirohi.R.S.,Radhakrishna.H.C, "Mechanical Measurements", New Age International (P) Ltd. 1997

5. Bray.D.E. and Stanley.R.K., "Course Material on Non-destructive Evaluation",

6. McGraw Hill Publishing Company, New York.1989

7. Ravisankar.K.andChellappan.A., "Advanced course on Non-Destructive

Testing and Evaluation of Concrete Structures", SERC, Chennai, 2007.

Ganesan.T.P, "Model Analysis of Structures", University Press, India, 2000

COURSE CODE:	COURSE TITLE	CREDITS	
04 CE 7107	Experimental Techniques And Instrumentation	3-0	-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Choic measurements –S	e of Experimental stress analysis methods, Errors in traingauge, principle, types, performance and uses	6	15
MODULE 2:Photo and pressure gaug of Testing Machin sensors– Fibre op	elasticity - principle and applications - Hydraulic jacks ges – Electronic load cells – Proving Rings – Calibration es – Long-term monitoring – vibrating wire tic sensors	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Chara Differential Trar acceleration meas Analyzer – Display XY Plotter – Chart	acteristics of Structural Vibrations – Linear Variable asformer(LVDT) – Transducers for velocity and surements. Vibration meter –Seismographs – Vibration and recording of signals – Cathode Ray Oscilloscope – Plotters – Digital data Acquisition systems	7	15
MODULE 4:Principles of Pressure and flow measurements – pressure transducers – sound levelmeter – venturimeter and flow meters – wind tunnel and its use in structural analysis– structural modeling – direct and indirect model analysis		7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Diagn measurements – construction and demolition – Tech	osis of distress in structures – crack observation and corrosion of reinforcement in concrete – Half cell, use – damage assessment – controlled blasting for iniques for residual stressmeasurements	8	20
MODULE 6:Non – acoustic emission Holography – used Advanced NDT me radar techniques,	8	20	
	END SEIVIESTER EXAIVI		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7109	ENGINEERING FRACTURE MECHANICS	3-0-0:3	2015

• **Course Objectives**: To introduce linear and non linear fracture mechanics principles and their applications to structural design.

To discuss the fracture phenomena in metals and non metals

Syllabus

Significance of fracture mechanics, Linear Elastic Fracture Mechanics (LEFM), Crack tip plasticity, Energy Balance Approach, Elastic plastic fracture mechanics (EPFM):– Fatigue CrackGrowth:–Sustained load fracture

Course Outcome:

The student will understand able to predict material failure for any combination of applied stresses. And also to estimate failure conditions of a structure .

Text Books:

References:

1.Ewalds, H.L. &Wanhill, R.J.H., "Fracture Mechanics" – Edward Arnold 2. David Broek, "Elementary Engineering Fracture Mechanics", Sijthoff and Noordhaff, Alphen Aan Den Rijn, The Netherlands.

3. Ed L. Elfgren and S.P. Shah, "Analysis of Concrete Structure by Fracture Mechanics", Proc of Rilem Workshop, Chapman and Hall, London.

COURSE CODE:	COURSE TITLE	CREDITS	
04 CE 7109	ENGINEERING FRACTURE MECHANICS	3-	0-0:3
	MODULES		Sem. Exam Marks (%)
MODULE 1:Introd	uction:–Significance of fracture mechanics, Griffith		
energy balance ap	pproach,Irwin's modification to the Griffith theory,		
Stress intensity ap	pproach, Crack tip plasticity,Fracture toughness, sub-	6	15
critical crack grow	rth, Influence of material behaviour, I, II & III		
modes, Mixed mo	de problems		
MODULE 2:Linea	r Elastic Fracture Mechanics (LEFM):-Elastic stress		
field approach, N	Node I elasticstress field equations, Expressions for		
stresses and stra	ins in the crack tip region, Finitespecimen width,	6	15
Superposition of	stress intensity factors (SIF), SIF solutions for	U	15
wellknown probl	ems such as centre cracked plate, single edge		
notched plate and	l embedded elliptical cracks		
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Crack	tip plasticity:-Irwin plastic zone size, Dugdale		
approach, Shape	of plastic zone, State of stress in the crack tip region,	7	15
Influence of stress	s state on fracture behaviour		
MODULE 4:Ener	gy Balance Approach:–Griffith energy balance		
approach, Relation	ons for practical use, Determination of SIF from		
compliance, Slov	w stable crack growth and R–curve concept,	_	. –
Description of cra	ack resistance.LEFM Testing:–Plane strain and plane	/	15
stress fracture to	ughness testing, Determination of R–curves, Effects		
of yield strengtr	and specimen thickness on fracture toughness,		
Practical use of tra	Acture toughness and R-curve data		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Elastic	plastic fracture mechanics (EPFM):–Development of		
EPFINI, J—Integral,	Crackopening displacement (COD) approach, COD		
Standard IIs tast	iction between J and COD, Tearing modulus concept,		
fatigue crack grou	the using stross intensity factor. Effects of tross ratio		
and crack tin place	ticity – crack closure. Prediction of fatigue crack	8	20
growthunder con	stant amplitude and variable amplitude loading		
Eatigue crack grov	with from not ches – the short crack problem		
MODULE 6:Sustained load fracture:-Time-to-failure (TTF) tests, Crack			
growth rate testing, Experimental problems, Method of predicting			
failure of a structu	ural component, Practical significance of sustained	8	20
load fracture test	ng. Practical Problems:-Through cracks emanating		
from holes, Corne	r cracks at holes, Cracks approaching holes, fracture		

⁵⁵ APJ Abdul Kalam Technological University |Cluster 4|M.Tech in Computer Aided Structural Engineering

toughness of weldments, Service failure analysis, applications in		
pressure vessels,		
pipelines and stiffened sheet structures		
END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7111	Maintenance and Rehabilitation of Structures	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- Identify scope of rehabilitation work for dilapidated / obsolete buildings
- Identify and apply appropriate structural and construction technologies to rectify maintenance problems

Syllabus

Quality assurance for concrete construction ,Influence on serviceability and durability, Maintenance and repair strategies,, Assessment procedure for evaluating a damaged structure,testing techniques. Materials for repair,Special concretes and mortar,Techniques for repair:– Examples of repair to structures

Course Outcome:

Students who successfully complete this course can recognize the mechanisms of degradation of concrete structures and to design durable concrete structures and also they can learn how to conduct field monitoring and non-destructive evaluation of concrete structures

Text Books:

References:

 Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.
 R.T.Allen and S.C.Edwards, "Repair of Concrete Structures", Blakie and Sons, UK, 1987.

3. M.S.Shetty, "Concrete Technology – Theory and Practice", S.Chand and Company, New Delhi, 1992.

4. Santhakumar, A.R., "Training Course notes on Damage Assessment and repair in Low Cost Housing "," RHDC–NBO " Anna University, July, 1992.

COURSE CODE:	COURSE TITLE	CRE	DITS
04 CE 7111	Maintenance and Rehabilitation of Structures	3-0)-0:3
	MODULES	Contact	Sem. Exam
	MODOLES	Hours	Marks (%)
MODULE 1:Qualit	y assurance for concrete construction as built		
concrete properti	concrete propertiesstrength, permeability, thermal properties and		15
cracking		-	
MODULE 2:Influer	nce on serviceability and durability:-Effects due to		
climate, temperat	ure, chemicals, wear and erosion, Design and		
construction error	rs, corrosion mechanism, Effects of cover thickness	6	15
and cracking, met	hods of corrosion protection, corrosioninhibitors,		
corrosion resistan	t steels, coatings, cathodic protection.		
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Mainte	enance and repair strategies:-Definitions :		
Maintenance, rep	air andrehabilitation, Facets of Maintenance	7 15	
importance of Ma	intenance, Preventive measures onvarious aspects		15
Inspection, Assess	ment procedure for evaluating a damaged	,	15
structure,causes o	of deterioration , testing techniques.		
MODULE 4:Mater	ials for repair:-Special concretes and mortar, concrete		
chemicals, special	elements for accelerated strength gain, Expansive		
cement, polymer	concrete, sulphurinfiltrated concrete, ferro cement,	7	15
Fibre reinforced c	oncrete.		
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Techn	iques for repair:-Rust eliminators and polymers		
coating for rebars	during repairfoamed concrete, mortar and dry pack,		
vacuum concrete, Gunite and ShotcreteEpoxyinjection, Mortar repair 8		20	
for cracks, shoring	g and underpinning.		
MODULE 6:Examples of repair to structures:-Repairs to overcome low			
member streng	th, Deflection, Cracking, Chemical disruption,	8	20
weathering wear,	fire, leakage, marineexposure–case studies.		
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7113	NUMERICAL METHODS IN CIVIL ENGINEERING	3-0-0:4	2015

Course Objectives:

- To introduce the principles of numerical techniques to students.
- To review and implement the basic principles of interpolation and polynomial approxiamation, numerical integration, solving simple ordinary differential equations and partial differential equation

Syllabus

Solution of Linear and Non–linear Equations, Solution Techniques for Eigen Value Problems

Interpolation and integration, Finite difference technique

Course Outcome:

The student will beable to apply knowledge of mathematics, science&Engineering And they can identify, formulate and solve engineering problems

Text Books:

References:

Rajasekaran S, "Numerical Methods in Science and Engineering – A practical approach", AH Wheeler & Co.

Bathe K J, "Finite Element Procedures in Engineering Analysis", Prentice Hall Inc.
 James M L, Smith G M, and Wolford J C, "Applied Numerical Methods for Digital computation", Harper and Row Publishers.

4. Krishnamoorthy E V and Sen S K, "Computer Based Numerical algorithms", Afiliated East West Press.

5. Stanton R C, "Numerical Methods for Science and Engineering", Prentice Hall of India.

6. M.K Jain, S.R.Klyengar, R.K Jain "Numerical Methods for Scientific and Engineering Computation".

7. R.W. Hamming, "Numerical methods for scientist and engineers", McGraw Hill, 1998.

COURSE CODE:	COURSE TITLE	CR	EDITS
04 CE 7113	NUMERICAL METHODS IN CIVIL ENGINEERING	3-0-0:4	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Solution of Linear and Non–linear Equations:–Review of Gaussian Elimination andCholesky methods – Storage schemes – Substructure concept – submatrix equation solver.Non linear system of equations: Newton Raphson, modified Newton Raphson Methods		6	15
MODULE 2:Solu Introduction – F method	tion Techniques for Eigen Value Problems:– orward iteration,inverse iteration, Jacobi, Given's	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Transf standard form – S method.	ormation of generalized Eigen valueproblem to a turm sequence property – Subspace iteration	7	15
MODULE 4:Interp cubic spline meth Integration –New Weights and Gaus plates.	olation and integration:–Lagrange – Hermitian and ods –Isoparametric style of interpolation. Numerical ton-Cotes quadrature–Gaussian quadrature – as points – Application to deflection of beams and	7	15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Finite problems of ordi beams and plates	difference technique:-Initial and Boundary value nary and partialdifferential equations applicable to only	8	20
MODULE 6:Finite and weighted resi	difference method,Newton' s Method, Variational dual methods.	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7115	Prefabricated Structures	3-0-0: 3	2015

Course Objectives:

• The students will get exposed to appreciate modular construction, industrialized construction Identify the design some of the prefabricated elements and also have the knowledge of the construction methods using these elements.

Syllabus

Types of prefabrication, prefabrication systems and structural schemes, Handling and erection stresses, Dimensioning and detailing of joints for different structural connections, Designing and detailing prefabricated units.

Course Outcome:

The student will be able to appreciate modular construction, industrialized construction and be able to Identify the design prefabricated elements .

Text Books:

- 1. Hass, A.M. Precast Concrete Desibg and Applications, Applied Science publishers, 1983.
- 2. Promyslolw,V Design And erection of Reinforced Concrete Structures,MIR Publishers, Moscow 1980
- 3. Koncz.T., Manual of Precast Concrete Construction, Vol.I, II and III, Bauverlag, GMBH, 1971
- 4. STructural Design Manual, Precast concrete connection Detaills, Society for studies in the use of Precast Concrete, NetherlandBetor Verlag, 1978

COURSE CODE:	COURSE TITLE	CR	EDITS
04 CE 7115	Prefabricated Structures	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Type structural scheme	es of prefabrication,prefabricationsyatems and es-Disuniting of structures	7	15
MODULE 2:Structural behavior of precast structures			15
INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3:Handli prestressing of ro- walls,Wallpanels,I	ing and erection stresses – Application of of members- floor systems two way load bearing hipped plate and shell structures.	7	15
MODULE 4:Dimer connections; joints.Production,	nsioning and detailing of joints for different structural construction and expansion Transportation& erection	7	15
INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5:Shutt Erection of R.C str	tering and mould design.Dimensional tolerance- ructures,Total prefabricated buildings	7	20
MODULE 6:Desig Industrial structur bunkers etc , (4) A	gning and detailing prefabricated units for (1) res (2) Multistorey buildings and (3) Water tanks, silos Application of prestrerssed concrete in prefabrication	7	20
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 6191/7191	SEMINAR –I/II	0-0-2: 2	2015

Course Objectives:

- 1. Improve the technical presentation skills of the students.
- 2. To train the students to do literature review.
- 3. To impart critical thinking abilities.

Methodology

Individual students are required to choose a topic of their interest from related topics to the stream of specialization, preferably from outside the M. Tech syllabus. The students are required to do a moderate literature review on the topic and give seminar. A committee consisting of at least three faculty members (preferably specialized in the respective stream) shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of his seminar topic. The seminar report shall not have any plagiarised content (all sources shall be properly cited or acknowledged). One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other shall be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation. It is encouraged to do simulations related to the chosen topic and present the results at the end of the semester.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CE 7193	PROJECT PHASE - I	0-0-12: 6	2015

Course Objectives:

The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real-life problems related to industry and current research.

The project work can be a design project/experimental project and/or computer simulation project on any of the topics related to the stream of specialisation. The project work is chosen/allotted individually on different topics. Work of each student shall be supervised by one or more faculty members of the department. The students shall be encouraged to do their project work in the parent institute itself. If found essential, they may be permitted to carry out their main project outside the parent institute, subject to the conditions specified in the M. Tech regulations of the APJ Abdul Kalam Technological University. Students are encouraged to take up industry problems in consultation with the respective supervisors.

The student is required to undertake the main project phase-1 during the third semester and the same is continued in the 4th semester (Phase 2). Phase-1 consist of preliminary work, two reviews of the work and the submission of a preliminary report. First review would highlight the topic, objectives, methodology and expected results. Second review evaluates the progress of the work, preliminary report and scope of the work which is to be completed in the 4th semester.

COURSE CODE	COURSE NAME	L-T-P: C	YEAR
04 CE 7194	PROJECT PHASE - II	0-0-21: 12	2015

Main project phase II is a continuation of project phase-I started in the third semester. There would be two reviews in the fourth semester, first in the middle of the semester and the second at the end of the semester. First review is to evaluate the progress of the work, presentation and discussion. Second review would be a pre -submission presentation before the evaluation committee to assess the quality and quantum of the work done. It is encouraged to prepare at least one technical paper for possible publication in journals or conferences. The project report (and the technical paper(s)) shall be prepared without any plagiarised content and with adequate citations, in the standard format specified by the Department /University.