APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Mechanical Engineering (Advanced Manufacturing & Production Management)

Scheme of Instruction & Syllabus: 2015 Admissions

Compiled By Rajiv Gandhi Institute of Technology, Kottayam July 2015

APJ Abdul Kalam Technological University

(Kottayam Cluster)

M. Tech Program in Mechanical Engineering

(Advanced Manufacturing and Production Management)

Scheme of Instruction

Credit requirements	: 67 credits (22+19+14+12)			
Normal Duration	: Regular: 4 semesters;	External Registration: 6 semesters;		
Maximum duration	: Regular: 6 semesters;	External Registration: 7 semesters.		
Courses: Core Courses:	Either 4 or 3 credit cours	ses; Elective courses: All of 3 credits		

ELIGIBILITY: B.Tech/B.E in Mechanical Engineering, Metallurgy Engineering, Materials Engineering, Production Engineering, Automobile Engineering or Industrial Engineering with a minimum of 60 % Marks/Equivalent CGPA.

Allotment of credits and examination scheme:-

Semester 1 (Credits: 22)

Exam Slot	Course No:			Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
A	04 ME 6201	Advanced Engineering Materials and Processing	4-0-0	40	60	3	4
В	04 ME 6203	Manufacturing Systems Management	3-1-0	40	60	3	4
С	04 ME 6205	Computer Integrated Manufacturing	3-0-0	40	60	3	3
D	04 ME 6207	Quality Engineering and Management	3-0-0	40	60	3	3
E	04 ME 6XXX*	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 ME 6291	Seminar - I	0-0-2	100	0	0	2
	04 ME 6293	Manufacturing and Precision Engineering Lab.	0-0-2	100	0	0	1
		Total	23				22

*See List of Electives-I for slot E

List of Elective - I Courses

Exam Slot	Course No.	Course Name	
E	04 ME 6209	Advanced Material Joining and Testing	
E	04 ME 6211	Theory of Metal Forming	
E	04 ME 6213	Micro Electro Mechanical Systems	
E	04 ME 6215	Micro and Nano Manufacturing	

Semester 2 (Credits: 19)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
А	04 ME 6202	Precision and Micromachining	3-1-0	40	60	3	4
В	04 ME 6204	Advanced Operations Research	3-0-0	40	60	3	3
С	04 ME 6206	Product Design and Development	3-0-0	40	60	3	3
D	04 ME 6XXX*	Elective - II	3-0-0	40	60	3	3
Е	04 ME 6XXX^	Elective - III	3-0-0	40	60	3	3
	04 ME 6292	Mini Project	0-0-4	100	0	0	2
	04 ME 6294	Industrial Engineering and Computational laboratory	0-0-2	100	0	0	1
		Total	22				19

*See List of Electives -II for slot D

^See List of Electives -III for slot E

List of Elective - II Courses

Exam	Course	Course Name	
Slot	Code		
D	04 ME 6208	Tooling for Manufacturing and Automation	
D	04 ME 6212	Advanced Powder Metallurgy	
D	04 ME 6214	Finite Element Method	
D	04 ME 6216	Metrology and Computer Aided Inspection	

List of Elective - III Courses

Exam Slot	Course Code	Course Name	
E	04 ME 6218	Supply Chain Management	
E	04 ME 6222	Financial Engineering and Economics	
E	04 ME 6224	Concurrent Engineering	
E	04 ME 6226	Simulation of Manufacturing Systems	

Summer Break

Exam Slot	Course No:	Name		L- T - P	Internal Marks	End Semester Exam		Credits
						Marks	Dura tion (hrs)	
NA	04 ME 7290	Industrial Training		0-0-4	NA	NA	NA	Pass /Fail
			Total	4				0

Semester 3 (Credits: 14)

Exam Slot	Course No:	Name		L- T - P	Internal Marks		End Semester Exam	
						Marks	Dura tion (hrs)	-
А	04 ME 7XXX*	Elective - IV		3-0-0	40	60	3	3
В	04 ME 7XXX^	Elective - V		3-0-0	40	60	3	3
	04 ME 7291	Seminar - II		0-0-2	100	0	0	2
	04 ME 7293	Project (Phase - I)		0-0-12	50	0	0	6
			Total	20				14

*See List of Electives-IV for slot A

^See List of Electives-V for slot B

List of Elective - IV Courses

Exam Slot	Course Code	Course Name
Α	04 ME 7201	Composite Materials and Manufacturing
Α	04 ME 7203	Advanced Non-Conventional Machining Processes
A	04 ME 7205	Automation and Control Systems
Α	04 ME 7207	Rapid Prototyping

List of Elective - V Courses

Exam Slot	Course Code	Course Name
В	04 ME 7209	Production Scheduling
В	04 ME 7211	Maintenance Engineering and Management
В	04 ME 7213	Decision Modelling
В	04 ME 7215	Advanced Engineering Mathematics

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	Exter Evalua Mar	ation	Credits
NA	04 ME 7294	Project (Phase -II)	0-0-21	70	30	NA	12
		Total	21				12

Total: 67 Credits

SEMESTER I

Syllabus

COURSE CODE	COURSE NAME	L-T-P:C	YEAR	
04 ME 6201	Advanced Engineering Materials and	4-0-0:4	2015	
04 IVIE 6201	Processing	4-0-0.4	2015	

Pre-requisites: Nil

Course Objectives:

- 1.To provide fundamental concepts of atomic structure, chemical bonds, crystal structure of metals with mechanical behavior of metals.
- 2. Understand the strengthening mechanisms of different types of metals.
- 3. To enable students to be more aware of the behavior of materials in engineering applications.

Syllabus Content:

Atomic structure and bonds of materials; Crystallography and crystal structures; Mechanism of crystallization; Grain structures and strengths; Phase diagrams; Production and application of materials like Molybdenum, Niobium, Titanium, ceramics; Maraging steels; High temperature super alloys.

Course Outcome:

The student will demonstrate the ability to select the materials for various engineering applications.

Text books:

- 1. Callister William. D., "Material science and engineering", John Wiley
- 2. Anderson J. C. et. al., "Material science for engineers", Chapman & Hall

- 1. Avner S. H., "Introduction to physical metallurgy", McGraw Hill
- 2. Barret C. S. and Massalski T. B., "Structure of metals", Pergamon Press
- 3. Dieter George E., "Mechanical metallurgy", McGraw Hill
- 4. Raghavan V., "Material science and engineering", Prentice Hall
- 5. Reed Hill E. Robert, "Physical metallurgy principles", East West Press
- 6. Van Vlack, "Elements of material science", Addison Wesley
- 7. Westbrook J. H., "Intermetallic compounds", John Wiley
- 8. "Source book of Maraging Steels", American Society for Metals

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6201	04 ME 6201 ADVANCED ENGINEERING MATERIALS AND PROCESSING		-0:4
	MODULES	Contact Hours	Sem. Exam Marks;%
MODULE 1: Atomic	Structure: correlation of atomic radius to strength,		
electron configurat	tions - Primary bonds: classification - specific		
properties - bond e	nergy, cohesive force, density, directional and non-		
directional, conduct	ivity and non-conductivity, opaque, lustrous, density		
etc Deeper ener	gy well and shallow energy well bond, melting	9	15
temperature, modu	us of elasticity, coefficient of thermal expansion and		
attributes of modul	us of elasticity in metal cutting process,- Secondary		
bonds: classificatior	n & properties – dispersion bond, polar molecule		
induced dipole bonc	l, permanent dipole bond – hydrogen bond.		
MODULE 2: Crysta	llography : BCC, FCC, HCP structures - short and long		
range order - eff	ects of crystalline and amorphous structure on		
mechanical propert	ies-determination of atomic packing factor of SC,		
BCC, FCC, HCP and	diamond - Coordination number – linear and planar		
densities, problems	s – applications of miller indices: slip system,		
brittleness of BCC, I	HCP and ductility of FCC- Schmid's law applications,	9	15
problems. Mechanis	sm of crystallization - effects of grain size, grain size		
distribution, grair	n shape, grain orientation on dislocation		
movement/strength	- Hall - Petch relation- significance high and low		
angle grain bound	daries on dislocation, Polishing and etching to		
determine the micro	ostructure.		
	FIRST INTERNAL TEST		

MODULE 3: Crystal Imperfections - role of surface defects on crack		
propagation - forest of dislocation - Burgers vector - correlation of		
dislocation density with strength - significance of Frank and Read source		
in materials deformation Phase diagrams: Limitations of pure metals and	9	15
need of alloying - Hume Rothery's ruleIntermetallics: Electron (or		
Hume - Rothery) compounds and Laves phase, AB ₂ structures.		
MODULE 4: Molybdenum: Ferromolybdenum -production of		
molybdenum – properties - effect of molybdenum alloying on hot		
strength, corrosion resistance, and toughness – applications - TZM,TZC.	9	15
Niobium: Production of niobium - niobium alloys - niobium in steel		
making-applications		
SECOND INTERNAL TEST		
MODULE 5: Maraging steel: History of maraging steel development -		
reaction in austenite - reaction in martensite - austenite to martensite		
transformation - effect of aging time - effects of maraging with cobalt,		
cobalt free, molybdenum and other alloying elements - variation of		
mechanical properties: yield strength, hardness and fatigue - effect of		
precipitate size - fracture toughness and weldability, hardness variation	10	20
in welded zone - manufacturing steps of rings- applications - special		
advantages and limitations. Ceramics: Paulings Rule-Cation anion radius		
ratio- AX, $A_m X_p$, $A_m B_m X_p$ type crystal structures – imperfections in		
ceramics.		
MODULE 6: Titanium: Ti-based binary phase diagram - production of		
ingot - effect of forging temperature and forging pressure - closed die		
forgings - shear bands - pickling of titanium - Ti alloys - problems in		
machining Titanium - welding of titanium - Heat Treatment of Ti -		
properties of titanium aluminides - applications. High temperature		
Super alloys: Characteristics of high-temperature materials- instances of	10	20
superalloy component failures, gas turbine engine requirement-		
selection of materials for high-temperature applications, Larson-Miller		
approach for creep performance – justification for Nickel as a high-		
temperature material, Vacuum induction melting (VIM), Vacuum Arc		
Remelting (VAR), Electroslag Remelting (ESR)		

7 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6203	Manufacturing Systems Management	3-1-0:4	2015

Course Objectives:

- 1. To develop the ability to apply the concepts of various manufacturing systems to solve organizational problems.
- 2. To learn to reduce the inefficiencies in manufacturing systems.

Syllabus Content:

Introduction to production systems, Facilities location, Plant layout, Inventory control, Modern production management tools, Aggregate planning, Master production schedule, Material requirement planning, Enterprise resource planning.

Course Outcome:

Knowledge of various manufacturing systems and methods for their implementation.

Text Books:

- 1. R. Paneerselvam, "Production and operations management", PHI, 2010.
- 2. P. B. Mahapatra, "Operations management: A quantitative approach", PHI, 2010.

- 1. Roberta S. Russell and Bernard W. Taylor III, "Operations management", PHI, 2007.
- 2. Francis, R. L. and White, J. A., "Facility layout and location: an analytical approach", Prentice-Hall Inc., New Jersey, 1974.
- 3. Moore, J. M., "Plant layout and design", Macmillan Company, New York, 1970.
- 4. Apple, J. M., "Plant layout and material handling", John Wiley and Sons, New York.
- 5. Tompkins and White, "Facilities planning", John Wiley and Sons, New York.
- 6. Brady, "Enterprise resource planning", Thomson Learning, 2001.
- 7. S. Sadagopan, "ERP: a managerial perspective", Tata McGraw-Hill, New Delhi 1999.

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6203	MANUFACTURING SYSTEMS MANAGEMENT	3-1-0:4	
	MODULES		Sem.Exam Marks;%
MODULE 1: Intro	duction: System concept of production, Types of		
production system,	Process planning and design, Make or Buy decisions.		
Facilities location:Facilities	acility location factors, Location analysis techniques,	9	15
Minimax location pr	oblem, Gravity location problem, Euclidean-Distance		
location problem			
MODULE 2: Plant	ayout:Need for layout, Objectives, Types of layout,		
Layout design proce	ess, Layout design cycle, Data collection, Equipment		
requirement, Activi	ty analysis, REL diagram, Employee requirement,	9	15
Development of lay	out: Block plan, Selection, Specification, Evaluation.		
Layout design proce	dures: ALDEP, CORELAP and CRAFT.		
	FIRST INTERNAL TEST		
MODULE 3: Inve	entory analysis and control:Inventory decisions,		
Inventory control s	ystems, ABC inventory System, Purchase Systems,	9	15
Quantity discounts,	Reorder point, Inventory models.		
MODULE 4: Mode	rn production management tools: Just in time		
manufacturing, Ele	ments of JIT, Pull versus Push method, Kanban	9	15
systems, Flexible Ma	anufacturing System, Kaizen, Lean Manufacturing.		
	SECOND INTERNAL TEST		
MODULE 5: Aggr	egate planning: Aggregate planning strategies,		
Aggregate planning	methods.	10	20
Master production	schedule: Cut and fit technique of MPS.		
MODULE 6: Mater	ials requirement planning: Bill of materials, MRP		
calculations, Lot siz	ing in MRP – EOQ, MCP, POQ, LUC, PPB methods,		
Evolution from MRP	to Manufacturing Resource Planning (MRP II).	10	20
Enterprise resource	planning (ERP):Overview of ERP, Benefits of ERP,		
ERP and functional u	inits.		

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6205	Computer Integrated Manufacturing	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

- 1. Understand the basics of CAD/CAM, it's tools, hardware, geometric modeling etc.
- 2. Familiarise with CNC machines and part programming.
- 3. Impart the concept of computer aided process planning and computer process monitoring.

Syllabus Content:

Introduction to CAD/CAM hardwares and systems; Hardware integration and networking; Database coordinate system, user interface, software modules; Geometric modeling; CNC machine tools; Tooling for CNC; CNC Part Programming; CNC part programming with CAD system; Computer aided process planning; Computer process monitoring

Course Outcome:

The student acquires the knowledge of the concepts of computer integrated manufacturing.

Text Books:

- 1. Alavudeen & N. Venkateshwaran, "Computer integrated manufacturing", PHI, 2005
- 2. Ibrahim Zeid and R Sivasubramanian, "CAD/CAM theory and practice", McGraw Hill, 2002

- 1. Bresenham, J. E., "Ambiguities in incremental line rastering", IEEE Computer Graphics and Applications, Vol. 7, No. 5, May 2000
- 2. Chris McMahon & Jimmie Browne, "CAD CAM principles, practice and manufacturing management", Pearson Education, 2000
- 3. David Parrish, "Flexible manufacturing", Butterworth Heinemann Ltd, 2004
- 4. Donald Hearn & M. Pauline Baker, "Computer graphics", Pearson Education, 2004
- Eckland, Eric, "Improved techniques for optimising iterative decision variable algorithms, drawing anti-aliased lines quickly and creating easy to use color charts", CSC 462 Project Report, Department of Computer Science, North Carolina State University, Spring 1999.

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6205	COMPUTER INTEGRATED MANUFACTURING	3-0	-0:3
	MODULES	Contact Hours	Sem. Exam Marks;%
MODULE 1: CAD/CA	AM contents and tools: Definition of CAD/CAM tools,		
Industrial look at C	AD/CAM. CAD/CAM hardware: Types of systems:		
Mainframe-based	Systems, minicomputer-based systems,		
microcomputer-base	ed systems, workstation-based systems, input	9	15
devices, output de	evices: architecture of graphics system. Graphic		
displays: raster disp	olay, rasterization, plasma displays, LCD displays, 3		
dimensional viewers			
MODULE 2: Line	and circle drawing algorithms: DDA algorithm,		
Bresenham's line a	algorithm, midpoint circle algorithm, windowing,		
clipping: line clipping	g. Transformations: Homogeneous coordinates 2D &		
3D transformations	s, rotation, translation and scaling, combining		
transformations, ha	rdcopy printers and plotters. Hardware integration		
and networking: st	tar, ring and bus LAN Configurations. CAD/CAM		
software graphics st	andards. Basic definitions: Data structure, data base,		
DBMS, database co	ordinate system, user interface, software modules:	9	15
operating system	module, graphics module, application module,		
programming modu	Ile, communication module. Geometric modeling:		
Types and mathema	atical representation of curves, wire frame models,		
wire frame entities,	curve representation, parametric representation of		
analytic curves: lin	e, circles, parametric representation of synthetic		
curves: Bezier curves	5.		
	FIRST INTERNAL TEST		
MODULE 3: Types	and representation of surfaces: Surface models,		
surface entities, sur	rface representation, parametric representation of		
analytic surfaces:	ruled surfaces, surface of revolution, tabulated	<u> </u>	4-
cylinder, parametric	representation of synthetic surfaces: Bezier Surface.	9	15
Types and represen	ntation of solids:Solid models, solid entities, solid		
representation, B-re	p, CSG, sweep representation.		

12 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

MODULE 4: Computer numerical control of machine tools: Principal		
types of CNC machine tools and their construction features – tooling for	9	15
CNC – ISO designation for tooling – CNC operating systems		
SECOND INTERNAL TEST		
MODULE 5: CNC Part Programming: Detailed manual part programming		
on lathe & milling machines using G & M codes, programming (a typical		
control system) Computer aided CNC part programming: Generation of		
tool path, generation of G & M codes, optimization of tool path (to	10	20
reduce machining time), CNC part programming with CAD system.		
Machining centers: 5 axis machining. Design changes for manufacturing		
problems. (Features available on typical CAM software).		
MODULE 6: Computer aided process planning: Group technology and		
process planning: concepts of group technology. traditional& computer		
aided process planning, retrieval & generative process planning,		
machinability data systems, computer-generated time standards,		
generation of route sheets, selection of optimal machining parameters,	10	20
methods. Computer process monitoring: Process control methods,		
direct digital control, supervisory computer control, steady state optimal		
control, on line search strategies, adaptive control.		

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6207	Quality Engineering and Management	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

- 1. Acquire knowledge on latest quality engineering tools and techniques.
- 2. Develop skills on foundations and phases of Six Sigma and TQM.
- 3. Understand SPC, acceptance sampling, Taguchi methods and QFD.

Syllabus Content:

Definition of quality; Philosophies of quality 'gurus'; Measures of quality; Cost of quality;Continuous process improvement; Statistical process control; Acceptance Sampling; Taguchi methods; Quality Function Deployment; Total Quality Management; Six sigma methodology; ISO 9000 and ISO 14000 series of standards.

Course Outcome:

The student will be able to apply the various concepts and tools of Quality Management in industry. **References:**

Text books:

- 1. Dale H. Besterfield, "Quality control", Person Education, New Delhi, 2006.
- 2. Dale H. Besterfield, Carol Besterfield, Glen H. Besterfield& Mary Besterfield, "Total quality management", Person

- 1.R. Subburaj, "ISO 9000: Path to TQM", Allied Publishers Limited, New Delhi, 1997
- 2. Bank J., "The essence of total quality management", Prentice Hall
- 3. Dale B. G., "Managing quality", Prentice Hall
- 4. A.V. Feigenbaum, "Total quality control", McGraw Hill
- 5. G. L. Taguchi and Syed et. al., "Quality engineering production systems", McGraw Hill
- 6. Essence of TQM John bank Prentice Hall
- 7. Zaidi, "SPC concepts, methodology and tools", Prentice Hall

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6207	QUALITY ENGINEERING AND MANAGEMENT	3-0-0:3	
	MODULES		Sem.Exam Marks;%
MODULE 1: Qualit	y: Defining quality; Philosophies of quality 'gurus',		
Dimensions of quali	ty, Measures of quality, Cost of quality – direct costs	5	15
& indirect costs.			
MODULE 2: 'Defee	ctives' and its significance - traditional model and		
emerging model of	'cost-of-quality.' Continuous process improvement:	5	15
PDSA cycle, Problem	solving methodology.		
	FIRST INTERNAL TEST		
MODULE 3: Statist	ical process control: Statistical tools, Control charts		
and use of probabili	ty distributions, process capability.	6	15
MODULE 4: Accept	ance Sampling:Lot-by-lot acceptance sampling by		
attributes, Fundan	nental concepts, statistical aspects: operating		15
characteristic curve,	producer's risk and consumer's risk, AQL, LQ, AOQ,		
ASN, ATI;Sampling	blan design. Lot-by-lot acceptance sampling plan for	6	
attributes. Accepta	nce sampling plans for continuous production –		
acceptance sampling	g plans for variables.		
	SECOND INTERNAL TEST		
MODULE 5: Taguch	i methods:Loss functions – signal-to-noise ratio -		
process optimization	n and robust product design using orthogonal arrays,		
parametric and to	olerance design. Quality Function Deployment:	10	20
Concept, House of C	Quality, QFD process.		
MODULE 6: Total	Quality Management (TQM): Definition Basic		
concepts, strategies		20	
problem solving technique. Quality system and standards: An overview			
of ISO 9000 and ISO	14000 series of standards.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6209	Advanced Materials Joining and Testing	3-0-0: 3	2015

Course Objectives:

- 1. Understand the basics of materials joining.
- 2. Get an idea about different joining techniques and response of materials on joining.
- 3. Instruct destructive and non-destructive testing methods.

Syllabus:

Introduction to welding, residual stresses, weldability, fusion welding, high energy beam welding, destructive and non-destructive testing, material responses to welding.

Course Outcome:

The student will understand the concepts of advanced materials joining and testing, for various applications.

Text Books:

1. Richard L. Little, "Welding and welding technology", 2000

2. S. W. Nadkarni, "Welding technology"

References:

1.J. F. Lacaster, "Metallurgy of welding, soldering and brazing", Pergamon Press

- 2. "Welding handbooks", American Welding Society
- 3. "Metal handbooks", American Society of Metals
- 4. O. P. Khanna, "Text book of welding technology", Dhanpat Rai& Sons
- 5. Carry, "Modern welding technology", Prentice Hall

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6209	ADVANCED MATERIALS JOINING AND TESTING	3-0-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Introdu	iction: Classification – heat sources – metallurgical		
effect of weld. Resid	Jual stresses : formation and relieving – capillary and	5	. –
welding action – ten	welding action – temperature range – filler material and fluxes – types of		15
joints and welding p	ositions		
MODULE 2: Weldab	ility: design, process and metallurgical consideration		
- testing and impro	ovement.Conventional joining techniques: Bolting –	_	
riveting – soldering	- blazing - adhesive bonding - diffusion bonding -	5	15
mechanical joining.			
	FIRST INTERNAL TEST		
MODULE 3: Fusion	welding: Oxyacetylene welding – SMAW – GTAW –		
GMAW – FCAW – S	AW – ESW. High energy beam welding: EBW, LBW,		
PAW – friction stir	welding. Output parameter variation – advantages	6	15
and disadvantages –	applications.		
MODULE 4: Destruc	tive tests for welds: Introduction – need – principles		
– applications – d	estructive tests: tensile, bend, impact, hardness,	6	15
fatigue, cracking, etc	ching.		
	SECOND INTERNAL TEST		
MODULE 5: Non-de	estructive tests: Visual, dye penetrants, magnetic		
particle, acoustics,	pressure, radiographic, ultrasonic, eddy current	10	20
testing			
MODULE 6: Respons	ses of materials to welding: Microstructural changes		
– distortion – defect	s: undercuts – overlaps – grain growth – blowholes –	10	20
inclusions – segrega	tion – lamellar tearing – porosity.		

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6211	Theory of Metal Forming	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

- 1. Understand the basics of theory of deformation, plasticity and metal forming process.
- 2. Get an idea about rolling and metal working.

Syllabus:

Theory of deformation; Theory of strain; Basic theory of plasticity; Theory of metal forming process: Forging, Drawing, Extrusion, Extrusion; Sheet metal working.

Course Outcome:

Understanding of the basic concepts of Theory of metal forming:

Text Books:

1. Durelli, Phillip's &Tsao, "Introduction to the theory of theoretical and experimental analysis of stress & strain", McGraw Hill, 1953

2. Avitzur B., "Metal forming: processes & analysis", McGraw Hill

- 1. Dieter George E., "Mechanical metallurgy", McGraw Hill
- 2. Ghosh A & A. K. Mallik, "Manufacturing science", Affiliated East-West Press, New Delhi
- 3. Hoffman O. and Sachs G., "Introduction to the theory of plasticity metal forming applications", McGraw Hill
- 4. Johnson & Mellur, "Engineering plasticity", Van Nostrand, Reinhold Co.
- 5. Johnson W. & Mellur P. B., "Plasticity for mechanical engineers", D.VanNostrand Co., London
- 6. Mendelson, "Introduction to theory of plasticity"
- 7. Pearson C. E. and R. N. Perkins, "The extrusion of metals", John Wiley, NY, 1960
- 8. Prager W. and Hodge P. G., "Theory of plastic solids", Chapman & Hall Ltd, London 1951

COURSE CODE	COURSE TITLE	CREDITS	
04 ME 6211	THEORY OF METAL FORMING	3-0-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Theory	of deformation: Theory of stress: Components of		
stress tensor, princi	pal areas and stresses, maximum shear stress, two	5	15
dimensional stress sy	stems, Mohr's circle for plane stress, problems.		
MODULE 2: Theor	y of strain: Strain components, strain rate, stress	_	
strain relation.		9	15
	FIRST INTERNAL TEST		
MODULE 3: Basic t	heory of plasticity: Assumptions in plasticity, flow		
conditions, Von-Mis	ses yield criteria, geometrical representation of		
Tresca and Von-Mise	es yield criteria, Levy von Mises stress strain rate law.	6	15
Slip line field theory,	upper and lower bound theorems.		
MODULE 4: Theory	of metal forming process: Forging: Forging of a		
rectangular plate u	nder conditions of plane strain and upper bound		
approach, forging o	f a solid disc on free body equilibrium and upper	6	15
bound approaches, a	annulus disc upper bound approach, forging defects.		
	SECOND INTERNAL TEST		
MODULE 5: Drawing	: Drawing of solid rods through conical die, drawing		
of solid circular rod	by upper bound approach, drawing of pipes over	10	20
floating mandrel and	l wire drawing.		
MODULE 6: Extrusi	ion: Extrusion force in the plane extrusion of a		
rectangular blank, h	10	20	
thin walled tube, ext	rusion defects.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6213	Micro Electro Mechanical Systems	3-0-0: 3	2015

Course Objectives:

- 1. Understand the basics of Microsystems, scaling laws in miniaturization.
- 2. Get an idea about design and application of different types of sensors ..

Syllabus:

Science for microsystems, Mechanics for microsystems, Thermo fluid for microsystems, Scaling laws in miniaturization, Micro sensors, Micro actuation, Design of pressure sensors.

Course Outcome:

An introduction to the basic concepts of micro electro mechanical systems.

Text Books:

- 1. Jaeger R. C., "Introduction to microelectronic fabrication", Wiley, 1989
- 2. Lawrence J. Kamm, "Understanding electro mechanical engineering, an introduction to mechatronics", Prentice Hall, 2000

- 1. M. Elwenspoek, "Silicon micromachining", Cambridge Press, 1998
- ². Marc J. Madou, "Fundamentals of micro-fabrication, the science of miniaturization", IEEE Press
- 3. Marc Madou, "Fundamentals of micro fabrication", CRC Press, 1997
- 4. RaiChoudhury P., "MEMS and MOEMS technology and applications", PHI, New Delhi
- 5. Stephen D. Senturia, "Microsystem design", Kluwer Academic Publishers, 2003
- 6. Trimmer, "Micromechanics and MEMS", IEEE Press, 1997
- 7. Tai Ran Hsu, "MEMS and microsystems design and manufacture", TMH, New Delhi

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 6213	MICRO ELECTRO MECHANICAL SYSTEMS	3-0	-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%	
MODULE 1: Scier	nce for microsystems: Molecular theory, doping,			
diffusion, plasma physics and electrochemistry.			15	
Mechanics for micr	osystems: Static bending of thin plates, mechanical	5	15	
vibrations, thermom	echanics and fracture mechanics, problems.			
MODULE 2: Thermo	o fluid for microsystems: Incompressible fluid flow in			
microconduits, fluid	flow in submicrometer – overview of heat conduction	C		
in solids, heat cond	uction in multilayerd thin films, heat conduction in	6	15	
solids in submicrome	eter scale.			
	FIRST INTERNAL TEST			
MODULE 3: Scaling	g laws in miniaturization: Scaling in geometry, rigid			
body dynamics, ele	ctroststic forces, electromagnetic forces, electricity,	6	15	
fluid mechanics and	heat transfer – materials for MEMS			
MODULE 4: Fabricat	ion process: Ion implantation – diffusion – oxidation -	5	15	
CVD: principle, struc	ture, reactions, rate of deposition, different types of			
CVD, enhanced CVD	- PVD: principle, structure, reactions, different types			
of PVD, magnetron s	puttering etc.			
SECOND INTERNAL TEST				
MODULE 5: Micro	sensors: Acoustic wave, bio, chemical, optical and			
thermal sensors. Mic	cro actuation: By thermal force, shape memory alloys,			
piezoelectric crystals	and electrostatic forces.	10	20	
Micro actuators: Mic	ro grippers, motor, valves, pumps and micro fluidics,			
fluid resistance in mi	cro channels, capillary electrophoresis.			
MODULE 6: Design	ODULE 6: Design of pressure sensors – design of accelerometers –			
design of resonant m	icro sensors, stress and strain in thin films etc.			
Micro machined am	plitude modulated and waveguide optical sensors -	10		
micro machined opti	cal pressure sensor – micro machined Bragg gratings -	10	20	
micro machined in	terferometric distance sensors - micro machined			
optochemical and bi	o sensors - micro machined nano probes.			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6215	Micro and Nano Manufacturing	3-0-0: 3	2015

Course Objectives:

- 1. To provide fundamental concepts of Characterizing etching processes in bulk micromachining, Crystallography and its effects, Photolithography, Micro and nanotechnology.
- 2. Understand the Carbonbased nanostructures.
- 3. To enable students to be more aware of Carbon nanotube production and applications.

Syllabus:

C`haracterizing etching processes in bulk micromachining, Crystallography and its effects, Photolithography, Micro and nanotechnology, Carbon nanotube production and applications.

Course Outcome:

The students will demonstrate the ability to understand the basics of micro and nano manufacturing.

Text Books:

1. N. P. Mahalik, "Micro-manufacturing and nanotechnology", Springer.

2. Mark J. Jackson, "Micro and nano-manufacturing", Springer.

- 1. Jeremy Ramsden, "Micro &nano technologies", Elsevier
- 2. M. Kahrizi, "Micromachining techniques for fabrication of micro, nano structures".

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6215	MICRO AND NANO MANUFACTURING	3-0	-0: 3
	MODULES		
MODULE 1: Charac	terizing etching processes in bulk micromachining -		
microfabrication of	MEMS and semiconductor devices -basics of	5	15
microfabrication, int	egrated circuit fabrication etc.		
MODULE 2: Crysta	llography and its effects , silicon as substrate and		
structural material,	stress and strain, - crystal plane effects on etching,		
wet etching process	, reaction phenomena, anisotropic etching, isotropic		
etch curves, maskin	g for anisotropic etchants, etching control, fusion	5	15
bonding of silicon or	n an insulator, deep reactive ion etching, fabrication		
of a cantilever	probe, manufacture, microprocessors etc and		
applications- probler	ms with etching in bulk micromachining.		
	FIRST INTERNAL TEST		
MODULE 3: Photo	lithography: Principle of the soft lithography and		
applications -princi	ple of microcontact printing and applications -		
characterizing the	surface micromachining process, isolation layer,	6	
sacrificial layer, strue	ctural material, selective etching – properties, stress,	0	15
stress measuremen	t, stiction - wafer bonding: anodic and fusion,		
bonding.			
MODULE 4: Micro	and nanotechnology: Applications for space		
micropropulsion - si	ubsystems and devices for miniaturised spacecrafts		
micropropulsion: m	nicrobolomete, micro FEEP, integrated cold-gas	6	15
microthruster, micro	oturbogas, pyrotechnic actuator and microvalveetc -		
propulsion systems:	solid propellant, ADCS etc.		
	SECOND INTERNAL TEST		
MODULE 5: Carbon	nanotube production and applications: Basis of		
nanotechnology -	structure and properties of carbon nanotubes-		
production of cark	oon nanotube: chemical vapour deposition, arc	10	
discharge, laser abla	tion, mechanisms of growth, purification of carbon	10	20
nanotube – applica	tions: electrical transport of carbon nanotubes for		
FET, Computers,	nanodevices for biomedical, X-ray equipment,		

23 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

nanomechanic actuator and artificial muscles, fuel cells, membrane		
electrode assembly, mechanical and electrical reinforcement of bipolar		
plates, hydrogen storage etc.		
MODULE 6: Carbon based nanostructures: - Structure of carbon		
nanotubes, Y-shaped, double helical, bamboo, hierarchical morphology -		
structure of fullerenes - structure of carbon nano balls- structure of		
carbon nano fibers - porous carbon - properties of carbon		
nanostructures – synthesis – potential applications of nanostructures -	10	20
composite materials - nanotechnology for fuel cell applications:		
nanoparticles in heterogeneous catalysis, O2 electro reduction reaction		
on carbon- supported Pt catalysts, carbon nanotubes as catalyst		
supports.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6105	Research Methodology	0-2-0:2	2015

Course Objectives:

- 1. To get introduced to research philosophy and processes in general.
- 2. To formulate the research problem and prepare research plan
- 3. To apply various numerical /quantitative techniques for data analysis
- 4. To communicate the research findings effectively

Syllabus

Introduction to Research methodology, Concept of Research, Criteria of good research, meaning, need and types of research design, Sampling fundamentals, Probability distributions.Principles of thesis writing. Documentation and presentation tools

Course Outcome:

- 1. The student will be able understand research process and can formulate a research problem.
- 2. The student will be able to prepare a research proposal as per existing standards

Text Books:

1. Research Methodology: Methods and Techniques', by Dr. C. R. Kothari, New Age

- 1. Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE PublicationsLtd; Third Edition
- 2. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard
- 3. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004
- 4. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 5. Management Research Methodology' by K. N. Krishnaswamy et al, Person Education

COURSE CODE	COURSE TITLE		CRE	DITS
04 ME 6105	RESEARCH METHODOLOGY		0-2-0:2	
	MODULES			Sem.Exam Marks;%
MODULE 1: Introdu	MODULE 1: Introduction to Research Methodology, Concepts of			
Research, Meaning a	Research, Meaning and Objectives of Research, Research Process, Types			15
of Research, Type of	research: Descriptive vs. Analytical, Applie	d vs.	5	15
Fundamental, Quant	itative vs. Qualitative, and Conceptual vs. I	Empirical		
MODULE 2: Criteria	of Good Research, Research Problem, Sele	ction of a		
problem, Technique	s involved in definition of a problem, Resea	irch	5	
Proposals – Types, c	ontents, Ethical aspects, IPR issues like pate	enting,	5	15
copyrights.				
	FIRST INTERNAL TEST			
MODULE 3: Meanin	g, Need and Types of research design, Liter	ature		
Survey and Review,	dentifying gap areas from literature review	Ι,	5	15
Research Design Pro	cess			
MODULE 4: Samplin	g fundamentals, Measurement and scaling		5	15
techniques, Data Co	lection – concept, types and methods, Des	ign of		
Experiments.				
Probability distribut	ons, Fundamentals of Statistical analysis, D	ata		
Analysis with Statist	cal Packages			
	SECOND INTERNAL TEST			
MODULE 5: Multiva	iate methods, Concepts of correlation and		4	20
regression, Fundame	entals of time series analysis and spectral a	nalysis.	-	20
MODULE 6: Principle	s of Thesis Writing, Guidelines for writing r	eports &		
papers, Methods of	giving references and appendices, Reprodu	iction of		
published material,	Plagiarism, Citation and acknowledgement.		4	
Documentation and	presentation tools – LATEX, Microsoft Offic	ce with	4 20	
basic presentations	kills, Use of Internet and advanced search			
techniques				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6291	Seminar I	0-0-2:2	2015

Course Objectives:

- 1. To assess the debating capability of the student to present a technical topic.
- 2. To impart training to a student to face audience and present his ideas and thus creating in him self-esteem and courage that is essential for an engineer.

COURSE PLAN

Individual students are required to choose a topic of their interest from areas related to the specialization, like: Materials, Manufacturing, Industrial Engineering, Quality Management etc., preferably from outside the M.Tech syllabus and give a seminar on that topic about 30 minutes. A committee consisting of at least three faculty members shall assess the presentation of the seminar and award marks to the students. Each student shall submit two copies of a write up of his / her seminar topic. One copy shall be returned to the student after duly certifying it by the Chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6293	Manufacturing and Precision	0-0-2:1	2015
	Engineering Lab.	0-0-2.1	2015

Course Objectives:

- 1. To familiarize with different design and analysis softwares.
- 2. Understand the working of CNC and part programming in CNC.
- 3. To provide training in operations of CMM.

Experiments:

- 1. Computer aided drafting.
- 2. Solid modeling: part creation, surface generation and assemblies of parts.
- 3. Surface modeling.

4. FEM: creation of model, use of different elements, treatment of different loads and boundary conditions

- 5. Study and programming of CNC production machines.
- 6. Study and programming of robots.
- 7. Study and measurements of components using CMM.
- 8. Surface roughness measurements using light, stylus, interference methods.
- 9. Metallographic studies using metallurgical microscope.
- 10. Determination of wear and coefficient of friction of the given specimen using pin on disc tester.
- 11. Study and use of laser interferometer for calibration of linear measurements.
- 12. Study of slip gauges wringing surface roughness standards.

13. Study of surface plates, straight edges, angle plate, V-block etc - use of desiccants, corrosion preventing coatings etc.

14. Measurement of out of roundness using roundness measuring instrument - V block and dial indicator etc. - reasons for out of roundness etc.

- 15. Measurements of straightness using sprit level, auto collimator etc.
- 16. Measurement of thread parameters using three wire method etc.
- 17. Measurement of tool angles of single point tool using tool maker's microscope.
- 18. Measurement of gear parameters using profile projector.
- 19. Evaluation of straightness error using autocollimator, sprit level, straight edge etc.
- **20.** Study and use of ultrasonic flaw detector.

Course Outcome:

The students will get the ability to understand different design and analysis software and get the opportunity to practice in CNC and CMM machines.

References: Manual of CNC, CMM, Design and Analysis software.

SEMESTER II

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6202	Precision and Micromachining	3-1-0: 4	2015

Pre-requisites: Nil

Course Objectives:

- 1. To understand the fundamental concepts of micromachining.
- 2. To introduce the importance of precision engineering and its applications.
- 3. To inspire the students with the latest trends in micromachining.

Syllabus:

Introduction to Laser beam machining, Machining Analysis, Mechanical micromachining, Micromachining tool design, Nanomachining, Advanced finishing processes, Micromachining by photonic beams, Micro-manufacturing for document security.

Course Outcome:

The student will understand the micromachining operations and its applications.

Text Books:

- 1. Hong Hocheng and Hung-Yin Tsai, "Advanced analysis of non-traditional machining", Springer.
- 2. NitaigourPremchandMahalik, "Micromanufacturing and nanotechnology"

- 1. Paulo Davim J, "Nontraditional machining processes", ISBN 978-1-4471-5179-1, Springer-Verlag, London, 2013.
- 2. Joseph McGeough, "Micromachining of engineering materials mechanical engineering", ISBN: 0-8247-0644-7.
- 3. M. Kahrizi, "Micromachining techniquess for fabrication of micro, nano structures".
- 4. Mark J. Jackson, "Micro and nanomanufacturing".

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 6202	PRECISION AND MICROMACHINING	3-1-	-0: 4	
	MODULES			
	asers basics: Monochromaticity, coherence,			
	collimation, brightness –focusing, shaping,			
pulsing, polarizatio				
	nining: Integration of laser system for cutting			
operation - princ	ciples of laser material removal – detailed	9	15	
discussion on prod	cess analysis, absorbed laser power at the cut	9	15	
front, exothermic	heat in reactive laser cutting - characteristics of			
cut front, tempera	ture at cut front, melt film thickness, melt flow			
velocity, mobility	of cut front- characteristics of cut surface,			
striation.				
MODULE 2: Lase	r Beam Machining Analysis :Thermal dynamic			
instability, hydrod	dynamic instability - heat-affected zone -		15	
processing parame	eters, cutting speed, laser beam, polarization of			
beam, wavelength	of laser beam, pulsed laser beam etc, gas nozzle	9		
etc - workpiece a	aspects for laser beam machining, workpiece			
thickness, workpie	ce materials – detailed discussion on different			
applications				
	FIRST INTERNAL TEST			
MODULE 3: Mec	hanical micromachining: microfluidic systems -			
theory of microma	chining; micro milling force analysis, initial chip			
curl modeling, bur	r formation in micromachining. Micromachining			
tool design - high s	speed air turbine spindles- mechanical design of	9	15	
high-speed rotors,	basic geometry of the rotor, rotor with fillet			
surfaces.				
MODULE 4: Nanor	nachining: Introduction, nanometric machining,	6	15	
theoretical basis	of nanomachining, Comparison of nanometric	9	15	

30 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

machining and conventional machining- implementation - single		
point diamond turning. Cutting force and energy, cutting		
temperature, chip formation and surface generation, minimum		
undeformed chip thickness, critical cutting edge radius, properties		
of workpiece materials.		
SECOND INTERNAL TEST		
MODULE 5: Advanced finishing processes (AFPs), abrasive flow		
machining (AFM), magnetic abrasive finishing (MAF),		
magnetorheological finishing (MRF), magnetorheological abrasive		
flow finishing (MRAFF), magnetic float polishing (MFP), elastic	10	20
emission machining (EEM), ion beam machining (IBM), and		
chemical mechanical polishing (CMP).		
MODULE 6: Micromachining by photonic beams- excimer laser-		
model construction of laser dragging- numerical simulation of		
dragged profile methods. Micro-manufacturing for document	10	20
security: Optically variable device - ODV foil microstructures-		
generic OVD microstructures- nano CODES.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6204	Advanced Operations Research	2-1-0: 3	2015

Course Objectives:

- 1. To study the mathematical techniques for the effective solution of real world problems.
- 2. To formulate the problem and find its optimal solution.

Syllabus:

Linear Programming, Sensitivity Analysis, Parametric Linear Programming, Integer Programming, Goal Programming, Non-linear Programming, Dynamic Programming, Network Analysis.

Course Outcome:

Students who successfully complete this course will understand the mathematical techniques to solve the real world production problems.

Text Books:

1. R. Paneerselvam, "Operations research", PHI, New Delhi, 2008.

- 1. Ravindran, Phillips, Solberg, "Operations research principles and practice", Willey & Sons, 1987.
- 2. Hamdy A. Taha, "Operations research", Pearson, 2004.

COURSE CODE	COURSE TITLE	CREDITS	
04 ME 6204	ADVANCED OPERATIONS RESEARCH	2-1-0: 3	
MODULES		Contact Hours	Sem.Exam Marks;%
MODULE 1: Linea	r Programming: Problem formulation, Graphical		
solution, Simplex me	ethod. Artificial starting solution: Big M method, Two	9	15
phase method. Dual	simplex method, Duality theory and applications.		
MODULE 2: Sensitiv	vity Analysis: Adding new constraint, Adding new		
variable, Changes in	n Objective function coefficients, Changes in right-		
hand side constant	ts of constraints.Parametric Linear Programming:	5	15
Changes in Objectiv	e function coefficients, Changes in right-hand side		
constants of constra	ints.		
FIRST INTERNAL TEST			
MODULE 3: Intege	er Programming: Branch and Bound technique,	5	
Gomory's cutting pla	ane method.	5	15
MODULE 4: Goal Programming:Goal Programming formulation, Simplex			
method for solvin	g Goal Programming. Nonlinear Programming:	7	15
Lagrangean method,	, Kuhn-Tucker conditions, Quadratic Programming.		
SECOND INTERNAL TEST			
MODULE 5: Dynam	nic Programming:Cargo loading model, Reliability		
improvement mod	el, Single machine scheduling model, Capital	8	20
budgeting model.			
MODULE 6: Netwo	ork Analysis: Shortest Route Problem: Systematic		
method, Dijkstra's a	lgorithm, Floyd's algorithm. Minimal Spanning Tree	8	
Problem: PRIM algorithm, Kruskal's algorithm. Maximum Flow Problem:			20
Maximal flow algorit	hm.		

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6206	Product design and development	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

- 1. To introduce the importance of precision engineering and its applications.
- 2. To inspire the students with the latest trends in micromachining.

Syllabus:

New product development; Product planning; Customer need identification; Design for various aspects, like: strength, rigidity, vibration, wear. DFM, DFA, DFMA; Ergonomics and industrial design; Prototyping; RP systems; Virtual prototyping; Design for the environment.

Course Outcome:

Student gets familiarized with the modern techniques and methods for engineering product development.

Text Books:

1. Karl. T. Ulrich, Steven D. Eppinger, "Product design and development", Irwin McGraw Hill, 2000

2. A. C. Chitale and R. C. Gupta, "Product design and manufacturing", PHI

- 1. Timjones Butterworth Heinmann, "New product development", Oxford, UCI, 1997
- 2. GeofferyBoothroyd, Peter Dewhurst and Winston Knight, "Product design for manufacture and assembly"
- 3. Dieter, George E., "Engineering design a materials and processing approach", McGraw Hill, Singapore, 2000
- 4. Harry Peck, "Designing for manufacture", Pitman Publications, 1983
- 5. Fixel J., "Design for the environment", McGraw Hill, 1996
- 6. Kevien Otto and Kristin Wood, "Product design." Pearson Publication, 2004

COURSE CODE	COURSE TITLE	CREDITS	
09 ME6206	PRODUCT DESIGN AND DEVELOPMENT	3-0-0: 3	
MODULES		Contact Hours	Sem.Exam Marks;%
MODULE 1: Pro	duct planning: Identifying customer needs,		
Product specifica	tions, Concept generation, Characteristics of	5	
successful product development Duration and cost of product		5	15
development			
MODULE 2: Int	roduction to practical design of equipment:		
Devices and mac	hines, Various aspects of design: conceptual,	5	
manufacturing, st	rength, rigidity, vibration, wear, lubrication,	5	15
maintenance and a	assembly.		
FIRST INTERNAL T	EST		
MODULE 3: De	sign for manufacturing:Definition, Concurrent		
engineering, Effec	t of materials & manufacturing processes on		
design, Estimatio	n of manufacturing costCost reduction of		
components and	assembly, Impact of DFM on other factors.	6	15
Component desig	n with machining considerations: Design for		
components; Turn	ing, Milling, Drilling and other related processes,		
including finish-ma	achining operations.		
MODULE 4: Ergo	nomics and industrial design: Introduction,		
General approach	to the man-machine relationship, Workstation		
design, Control an	d displays, Shapes and sizes of various controls		
and displays. Desi	gn of major controls: Automobiles, machine	6	15
tools etc.; Ergono	mics and production, Ergonomics in automated		
systems, Expert s	ystems for ergonomic design, Anthropometric		
data and its application	ations.		
SECOND INTERNAL TEST			
MODULE 5: Pro	ototyping: Prototyping basics, Principles of		
prototyping, Tec	hnologies, Planning for prototypes. Rapid	10	20
prototyping: Dev	elopment of RP systems; Stereolithography,		

35 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

Three dimensional printing, Selective laser sintering, Direct metal		
laser sintering, Selective laser melting, Electron beam melting,		
Virtual prototyping.		
MODULE 6: Design for the environment: Introduction,		
Environmental objectives, Global issues, Basic DFE methods,		
Design guidelines. Lifecycle assessment: Environmentally		
responsible product assessment, Weighted sum assessment	10	
method, Lifecycle assessment method. Techniques to reduce	10	20
environmental impact: Design to minimize material usage, Design		
for disassembly, Design for recyclability, Design for remanufacture,		
Design for energy efficiency. Design to regulations and standards.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6208	Tooling for Manufacturing and Automation	3-0-0: 3	2015

Course Objectives:

- 1. To introduce the various tooling methods in automation and manufacturing
- 2. To make awareness among students about various tool engineering aspects.

Syllabus:

Work holding devices; locators; clamps; Indexing devices; Drill jigs, fixtures. Welding fixtures, Calculation of tool forces; Machine tool slide ways; Vibration of machine tools;

Course Outcome:

The student will learn the basics of tool engineering in automated production systems.

Text Books:

- 1. Edward G. Hoffman, "Jig and fixture design", Delmar Learning.
- 2. Joshi P. H., "Jigs & fixtures", Tata McGraw Hill Pub. Co. Ltd., 1999.

- 1. Basu S. K., "Design of machine tools", Allied publishers, Bombay, 1965
- 2. Boyes E. William, "Jigs & fixtures & gauges", 1st Edition, SME, 1986
- 3. Donaldson, Lecain and Goold, "Tool design", McGraw Hill, New York, 1976
- 4. Erik Karl Henriksen, "Jig and fixture design manual".
- 5.Gopal Chandra Sen and Amitabha Bhattacharya, "Principles of machine tools", New Central Book Agency, Calcutta, 1967
- 6. Henriksen E. K., "Jig and fixture design manual", Industrial Press, New York, 1973
- 7.Koenigsberger F, "Design principles of metal cutting machine tools", Macmillan
- 8. "Tool and manufacturing engineers handbook", Volume 1: Machining, SME
- 9. "Die design handbook", 3rd Edition, SME, 1990

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6208	TOOLING FOR MANUFACTURING AND AUTOMATION	3-0	-0: 3
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Loca	ting methods: Methods, degrees of freedom,		
pins, vertical holdi	ng, radial location, diamond pins - principles of	5	15
pin location – V loc	cators. Tool forces in different processes		
MODULE 2: Princ	iple of clamping:Clamping types – quick action		
clamping, power o	clamping etc. Elements. Work holding principle		
for irregular and ro	ound surfaces, Rigid and elastic holding, Types of	F	
work holders, W	ork holder selection. Analysis of clamping	5	15
forces:Strap clamp	calculations, Clamping force analysis of toggle		
and screw clamp.			
FIRST INTERNAL TI	EST		
MODULE 3: Index	ing devices:Linear indexing, rotary indexing etc.		
Drill jigs: Types, Le	eaf jigs, box jigs, channel jigs, template jigs and		
indexing jigs – Chi	p formation in drilling – types of drill bushings.		
Types of fixtures:	Economics of fixture, Vise fixtures, Types and		
details of milling fi	xtures, Requirements of milling fixtures, special	8	15
vice jaws. Facing,	straddle, gang, index, rotary and reciprocal		
milling fixtures. Ty	ypes and details of boring, slotting, broaching		
fixtures. Types an	d details of lathe fixtures, chucks, face plate,		
collets, mandrels, e	etc types and details of grinding fixtures.		
MODULE 4: Weld	ing fixtures: Gas, arc and resistance welding		
fixtures, Tooling fo	or soldering and brazing, Modern jigs, hydraulic		
and pneumatic fi	ixtures. Tool holding methods for numerical		
control, Tool m	agazines, Vibration isolated tool holders.	8	15
Calculation of too			
operation. Detern	nination of power consumption in cylindrical		
grinding, drilling, l	proaching, shaping and milling process . Thrust		

38 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

on a drill.		
SECOND INTERNAL TEST		
MODULE 5: Machine tool slide ways: Different shapes, materials;		
Hydrodynamic action. Machine tool guides: wearing of guides-	8	
guide materials, Stick slip motion in guides, Temperature	0	20
deformation of guides, Liquid friction in guides.		
MODULE 6: Vibration of machine tools: Effects of vibration,		
Sources of vibration. Single and two degree of freedom chatter	8	
theory; Chatter in lathe, radial drilling, milling and grinding	0	20
machines; Elimination of vibration.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6212	Advanced Powder Metallurgy	3-0-0: 3	2015

Course Objectives:

- 1. To understand the basics of powder metallurgy.
- 2. To study the various powder metal technologies and its applications

Syllabus:

History, methods and design of Powder metallurgy; Iron powder production; Liquid phase sintering; Thermodynamics and kinetic factors; Process details of Powder metallurgy.

Course Outcome:

The student understands the powder metal technologies and its applications.

Text Books:

- 1. Randall M. German, "Liquid phase sintering", Plenum Press.
- 2. "Powder metal technologies and applications", ASM Hand book, Vol. 7

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 6212	ADVANCED POWDER METALLURGY	3-0	-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%	
MODULE 1: Introd	uction: History: Methods and design, Advances in			
applications, Proces	s modeling and design. Iron powder production: The	5	15	
Hoganas process,	The Pyron process, Carbonyl vapor metallurgy,	5	15	
Electrolytic iron, Flui	dized-bed reduction, Water-atomized iron powders.			
MODULE 2: Liquid p	hase sintering: Microstructure; Typical			
microstructure, Con	tent angle, Dihedral angle, Volume traction, Porosity	5	15	
and pore size, Grain	size and shape, Contiguity, Connectivity, Neck size	J	15	
and shape etc.				
	FIRST INTERNAL TEST			
MODULE 3: Thern	nodynamics and kinetic factors: Kinetic energy,			
Wetting, Spreading	, Segregation, Capillarity, Viscous flow, Solubility,	6	15	
linter diffusion etc.				
MODULE 4: Initial	stage processes: Solubility; solubility effects, Melt	6		
formation,Penetrati	ons and Fragmentation contact force,		15	
Rearrangement; Por	re characteristics, Phase diagram concepts, Contact	0	15	
formation.				
	SECOND INTERNAL TEST			
MODULE 5: Intern	nediate stage processes: Solution representation,			
Characteristic featu	ires, Grain shape accommodation, Densification,	10	20	
Intergranular neck g	rowth coalescence, Pore filling.			
MODULE 6: Final sta	ge processes: Densification, Grain growth, Grain size			
distribution, Discont	distribution, Discontinuous grain growth, Inhibited grain growth, etc.			
Properties of liquid	10	20		
mechanical behavi	or, high temperature properties, Thermal and	properties, Thermal and		
electrical properties	, Wear and magnetic behavior, Applications.			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6214	Finite Element Method	3-0-0: 3	2015

Course Objectives:

- 1. To gain knowledge about the fundamentals of finite element methods.
- 2. To understand the application of finite element analysis.

Syllabus:

General procedures of FEM; Minimum PE method, Castigliano's first theorem, Truss structures; Method of weighted residuals; Applications in solid mechanics; Introduction to FEM software

Course Outcome:

The student understands the basics of finite element analysis and its applications.

Text Books:

- 1. David V Hutton, "Fundamentals of finite element analysis", McGraw Hill.
- 2. K. H. Huebner, "The finite element method of engineers", John Wiley & Sons, New York

References:

1. L. J. Segerlind, "Applied finite element analysis", John Wily & Sons, New York.

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 6214	FINITE ELEMENT METHOD	3-0	-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%	
MODULE 1: Basic	concepts of FEM: A general procedure for finite	5	15	
element analysis, Bri	ef history of finite element method	C	15	
MODULE 2: Linear s	spring as a finite element, elastic bar, spar/link/truss			
element. Strain ene	element. Strain energy, Castigliano's first theorem, minimum potential		15	
energy.				
FIRST INTERNAL TES	т			
MODULE 3: Truss	structures: The direct stiffness method, Nodal			
equilibrium equatio	n, element transformation and direct assembly of	6		
global stiffness mati	rix, boundary conditions, constraint forces, element	0	15	
strain and stress, thr	ee dimensional trusses.			
MODULE 4: Flexu	re: Elements, Elementary beam theory, Flexure		15	
element, Flexure e	lement stiffness matrix and element load vector,	G		
Work equivalence	for distributed loads, Flexure element with axial	6		
loading.				
SECOND INTERNAL	TEST			
MODULE 5: Metho	d of weighted residuals: Introduction, Method of			
weighted residuals, ⁻	The Galerikin finite element method.			
Application of Galer	ikin's method to structural elements, Spar element,			
Beam element. Inte	erpolation function for general element formation;	10		
Compatibility and c	ompleteness requirements, Polynomial forms, One	10	20	
dimensional eleme	nts, Triangular elements, Rectangular elements,			
Three dimensional e	elements, Isoperimetric formulations, Axisymmetric			
elements, Numerica	integration, Gaussian quadrature.			
MODULE 6: Applica	tions in solid mechanics: Plane stress, plane strain;			
Rectangular elemen	t, Isoparametric formulation of plane quadrilateral			
element, Axisymme	etric stress analysis. General three dimensional	10		
stress: Finite cleme	ress: Finite clement formulations, strain and stress computations,			
practical considerati	ons. Torsion: Boundary condition, torque.			
Introduction to FEM	software.			

43 APJ Abdul Kalam Technological University | M.Tech in Advacned Manufacturing and Production Management

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6216	Metrology and Computer Aided Inspection	3-0-0: 3	2015

Course Objectives:

- 1. To introduce the importance of precision engineering and computer aided inspection.
- 2. To learn the latest advancements in high precision measurements.

Syllabus:

Metrological concepts; Standards for length measurement; Tolerances and specifications; Angular measurements; Thread measurements; Laser metrology; Co-ordinate measuring machine; Machine vision system.

Course Outcome:

The student gets familiar with the various high precision measuring techniques.

Text Books:

- 1. "Hand book of industrial metrology", ASME
- 2. Hume, "Metrology", McDonald

04 ME 6216 METROLOGY AND COMPUTER AIDED INSPECTION	3-0	
	J-0-	-0: 3
MODULES	ontact Hours	Sem.Exam Marks;%
MODULE 1: Metrological concepts: Abbe's principle, Need for high		
precision measurements, Problems associated with high precision		
measurements. Standards for length measurement; Shop floor standards	5	15
and their calibration. Light interference; method of coincidence		
Slip gauge calibration, Measurement errors.		
MODULE 2: Various tolerances and specifications: Gauging principles;		
Selective assembly, Comparators. Angular measurements: Principles and	5	15
instruments.		
FIRST INTERNAL TEST		
MODULE 3: Thread measurements; Surface and form metrology;		
Flatness, roughness, waviness, roundness etc. Computer aided	6	15
metrology; Advantages and limitations.		
MODULE 4: Laser metrology: Applications of lasers in precision		
measurements, Laser telemetric system, Laser interferometer, Speckle	6	15
measurements, Laser inspection, Dimensional measurement techniques.		
SECOND INTERNAL TEST		
MODULE 5: Co-ordinate measuring machine: Contact and non-contact		
CMM. Causes of errors, Accuracy specifications, Contact and non-contact	10	
probes.Calibration of CMM; Measuring scales, Moiré fringes in linear	10	20
grating, Advantages and applications of CMM.		
MODULE 6: Machine vision system: Image formation, Binary and		
grayscale image, Image histogram, Histogram operations, Pixel point	10	20
processing and pixel group processing, Image sharpening and smoothing,		
Edge detection and enhancement.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6218	Supply Chain Management	3-0-0: 3	2015

Course Objectives:

- 1. To learn the fundamentals of supply chain and logistics management.
- 2. To stress the importance of an efficient and green supply chain.

Syllabus

Introduction to supply chain management, Demand forecasting in supply chain, Role of aggregate planning in supply chain, Supply chain inventory, Role of safety stock in supply chain, Sourcing decisions in supply chain, Transportation decisions in supply chain, Logistics

Course Outcome:

The student will learn to design and manage efficient supply chains.

Text Books:

- 1. Sunil Chopra and Peter Meindl, "Supply Chain Management Strategy Planning and Operation", PHI.
- 2. Handfield R. B., Nichols Jr. E. L., "Introduction to supply chain management", Pearson Education.

- 1. Raghuram R. and Rangaraj N., "Logistics and supply chain management", Macmillan, 2001
- 2. Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., "Designing & managing the supply chain: concepts, strategies & case studies". 2nd Edition, Tata McGraw-Hill, 2003
- 3. Agarwal D. K., "A text book of logistics and supply chain management", Macmillan, 2003

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6218	SUPPLY CHAIN MANAGEMENT	3-0	-0: 3
	MODULES	Contact Hours	Sem.Exam Marks;%
basics, decision pha efficiency and respo	action to supply chain management. Supply chain ses in supply chain, supply chain flows, supply chain insiveness, supply chain integration, process view of ertainties in supply chain, key issues in supply chain	6	15
coordination, bullw		5	15
	FIRST INTERNAL TEST		
supply chain, compo level, trend and a measures of forec	d forecasting in supply chain:Role of forecasting in onents of a forecast, forecasting methods, estimating seasonal factors, Holt's model, Winter's model, ast error. Role of aggregate planning in supply nning strategies, managing supply and demand in	7	15
chain, economies o	chain inventory:Role of cycle inventory in supply f scale, lot sizing for a single product, lot sizing for quantity discounts, trade promotions, price	8	15
	SECOND INTERNAL TEST		
level of safety inver product availability.	safety stock in supply chain, determining appropriate story, inventory replenishment policies, measures of Sourcing decisions in supply chain:Supplier selection sign collaboration, making sourcing decisions in	8	20
chain, factors affect in transportation. L considerations, inb	ortation decisions: Role of transportation in supply ing transportation decisions. Routing and scheduling ogistics: Definition, logistics and SCM, international ound logistics, internal logistics and outbound gistics, green supply chain.	8	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6222	Financial Engineering and Economics	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- 1. To learn the basic concepts of financial management.
- 2. To get an introduction into modern economic theory

Syllabus

Objectives of financial management, Capital budgeting, working capital management, financial instruments and financial institutions, Demand theory, Theory of cost, market structure.

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understand the basic concepts of financial management. To get an introduction into modern economic theory.

Text Books:

- 1. Khan & Jain, "Financial management", Tata McGraw Hill
- 2. Prasanna Chandra, "Financial management", Tata McGraw Hill

- 1. James C. Van Horne, "Financial management and policy", Prentice Hall of India
- 2. Brealy & Onyers, "Principles of corporate finance", McGraw Hill
- 3. Paul Samuelson, "Economics", Tata McGraw Hill

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6222	FINANCIAL ENGINEERING AND ECONOMICS	3-0	-0: 3
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Introdu	MODULE 1: Introduction: Objectives of financial management - financial		
decisions in a firm - agency problem - financial management in India.			
Time value of money	y - compounding and discounting techniques.	6	15
Capital budgeting: C	apital budgeting process - investment criteria - NPV,		
IRR, ARR, benefit cos	st ratio, payback period, accounting rate of return.		
MODULE 2: Working	g capital management: Factors affecting working		
capital - managemer	nt of cash and marketable securities, Receivables		
management. Sourc	es of long term finance - equity capital - preference	6	15
capital - debenture o	capital - term loans - retained earnings –		
depreciation.			
	FIRST INTERNAL TEST		
MODULE 3: Financia	al instruments & Financial institutions. Capital		
structure: Factors af	fecting - capital structure theories - net income - net		
operating income - N	MM approach - traditional approach. Dividends –	6	15
forms - dividend pol	icy – determinants - MM hypothesis - Walters model		
-Gordons model.			
MODULE 4: Demand	theory: Utility analysis - indifference curve		
technique - consume	ers equilibrium -income effect - substitution effect -		
price effect.		6	15
Elasticity of demand	- price - income - cross - measurement of elasticity		
Consumer surplus.			
	SECOND INTERNAL TEST		
MODULE 5: Theory of	of costs: Opportunity cost - implicit and explicit cost -		
short run total, aver	age and marginal costs - cost curves - long run	9	20
average cost curve,	Marginal and average revenue.		
MODULE 6: Market	structures - perfect competition – monopoly -		
monopolistic compe	tition - price and output determination – oligopoly -	9	20
kinked demand curv	e - price leadership - collusive oligopoly.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6224	Concurrent Engineering	3-0-0: 3	2015

Course Objectives:

- 1. To get an introduction into concurrent engineering.
- 2. To understand the technical and economic side of concurrent engineering.

Syllabus

Introduction, Basic process issues, Fabrication process, Concurrent engineering in manufacturing systems, Concurrent automated fabrication systems, Economic analysis and case studies.

Course Outcome:

The student will recognize the relevance of concurrent engineering.

- 1. James L. Nevins and Daniel E. Whitney, "Concurrent design of products and processes", McGraw Hill, 1989
- 2.David D. Bedworth, Mark R. Handerson and Philip M. Wilze, "Computer integrated design and manufacturing", McGraw Hill, 1991

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 6224	CONCURRENT ENGINEERING	3-0-0: 3		
	MODULES			
MODULE 1: Introdu	ction - basic concepts - traditional vs. concurrent			
approach - schemes	and tools of concurrent engineering - application of	6	15	
computers in the pra	actice of concurrent engineering.			
MODULE 2: Basic pr	ocess issues: Process models - types - importance.			
Relation between m	odels, specifications, technology, automation and	6		
process improvemen	nt. Fabrication processes - assembly processes -	0	15	
models of manufact	uring, testing and inspection.			
	FIRST INTERNAL TEST			
MODULE 3: Concurr	rent engineering approach in manufacturing			
systems: System des	ign procedure - features – intangibles. Assembly	G	15	
resource alternative	s - task assignment - tools and tool changing -	6		
material handling al	ternatives.			
MODULE 4: Concurr	ent automated fabrication systems: Introduction -			
methodology - prelir	ninary and detailed work content analysis -			
alternatives - humar	n resource considerations. "Technical - Economic"	8	15	
performance evalua	tion - concurrent assembly work station - strategic			
issues - technical iss	ues - economic analysis.			
	SECOND INTERNAL TEST			
MODULE 5: Econom	ic analysis of systems: Types of manufacturing cost -			
pro-forma, cash-flov	v, determining allowable investment - evaluation of	0		
investment alternati	ives - sensitivity analysis - effect of recycling and	8	20	
rework.	rework.			
MODULE 6: Case stu	dies of concurrent engineering practice: Automobile	8	20	
air-conditioning mod	dule - robot assembly of automobile rear-axles.	0	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6226	Simulation of manufacturing system	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- 1. To learn the fundamentals of system simulation.
- 2. To make the students able to model and analyse manufacturing systems

Syllabus

Random number generation, System concept, System simulation, Concepts in discrete event simulation, Random number generation, Input modelling for simulation, Verification and validation of simulation models, Output analysis for a single model, Simulation modelling and analysis of manufacturing systems, Simulation software for manufacturing applications.

Course Outcome:

The student will be able to model and analyse manufacturing systems.

Text Books:

 Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., "Discrete-event system simulation", Third Edition, Pearson Education, Inc., 2001
Gordon G., "System simulation", Prentice Hall Ltd. 1991

References:

 Deo, N., "System simulation with digital computer", Prentice Hall of India, 1997
Askin R. G. and Standridge, C. R., "Modelling and analysis of manufacturing systems", John Wiley & Sons, 1993.

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 6226	SIMULATION OF MANUFACTURING SYSTEM	3-0	-0: 3
	MODULES		
MODULE 1: System concept: Systems and system environment, components of a system, discrete and continuous systems, systems approach to problem solving, types of system study, system analysis, system design and system postulation, system modelling, types of models. System simulation: Technique of simulation, comparison of simulation and analytical methods, types of system simulation, steps in simulation study, Monte Carlo simulation. Concepts in discrete event simulation: Event scheduling/time advance algorithm, modelling world views, simulation programming tasks, comparison and selection of simulation languages.		7	15
MODULE 2: Random number generation: Techniques for generating random numbers, linear congruential method, test for random numbers, frequency tests, run tests, tests for autocorrelation, gap test, and Poker test. Random variate generation: Inverse transformation technique, exponential, uniform, weibull, triangular, empirical-discrete and continuous distributions. Convolution method, acceptance - rejection technique.		6	15
	FIRST INTERNAL TEST		
the distribution wit	nodelling for simulation: Data collection, identifying h data, parameter estimation, goodness of fit test, rov and Smirnov tests, selecting input model when le.	7	15
MODULE 4: Verification and validation of simulation models: Verification of simulation models, calibration and validation of models, face validity, validation of model assumption, validating input-output transformation, input-output validation using historical input data.		7	15
	SECOND INTERNAL TEST		
MODULE 5: Output analysis for a single model: Measures of performance and their estimation, point estimation, interval estimation, output analysis for terminating simulations and steady state simulations. Simulation modelling and analysis of manufacturing systems: Objectives, `performance measures, issues in simulation of manufacturing systems.		7	20
simulation of job sh	lation software for manufacturing applications, op manufacturing systems, simulation modelling and erver and single queue systems, inventory systems	8	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6292	Mini Project	0-0-4:2	2015

Course Objectives:

To develop practical ability and knowledge about practical tools/techniques in order to solve the actual problems related to the industry, academic institutions or similar area.

COURSE PLAN

The student shall undergo a Mini Project of two months duration. The mini project is designed to develop practical ability and knowledge about practical tools/techniques in order to solve the actual problems related to the industry, academic institutions or similar area. Students can take up any application level/system level project pertaining to a relevant domain. Projects can be chosen either from the list provided by the faculty or in the field of interest of the student. For external projects, students should obtain prior permission after submitting the details to the guide and synopsis of the work. The project guide should have a minimum qualification of ME/M.Tech in relevant field of work. At the end of each phase, presentation and demonstration of the project should be conducted, which will be evaluated by a panel of examiners. A detailed project report duly approved by the guide in the prescribed format should be submitted by the student for final evaluation. Publishing the work in Conference Proceedings/ Journals with National/ International status with the consent of the guide will carry an additional weightage in the review process.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 6294	Industrial Engineering and	0-0-2:1 2015	2015
	Computational Laboratory	0-0-2.1	2015

Course Objectives:

- 1. To familiarise the areas of Industrial Engineering and its application in industries.
- 2. To learn the use of software packages for solving Industial Engineering problems

Syllabus:

Experiments on:-

- 1. Method Analysis
- 2. Micro motion study
- 3. Work Measurement
- 4. Data Analysis and Solving optimization problems using software packages:-
 - Excel a.
 - SPSS b.
 - TORA c.
- 5. **Quality Control**
- 6. Verification of central limit theorem for various populations
- Study and construction of control charts 7.
- Study and construction of OC curve of a sampling plan 8.
- 9. Simulation model building and conducting simulation experiments using:-
 - MATLAB a.
 - b. WITNESS
 - ARENA c.

Course Outcome:

The student will learn the industrial engineering applications in industries.

References:

Lab manual and software.

SUMMER BREAK

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7290	Industrial Training	0-0-4: 0	2015

Pre-requisites: Nil

The student shall undergo Industrial training in an industry/company approved by the institution and under the guidance of a staff member in the concerned field. At the end of the training the student has to submit a report on the work being carried out. The objective of the training is to develop practical ability and knowledge about practical tools/techniques used to solve the actual problems in industry.

At the end of training presentation and review should be conducted which will be evaluated by a panel of examiners. A detailed report duly approved by the guide in the prescribed format should be submitted by the student evaluation.

It is a zero credit pass/fail course, and its evaluation is to be done in the third semester. The duration for the industrial training shall be 3 weeks.

<u>SEMESTER – III</u>

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7201	Composite Materials and Manufacturing	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

- 1. The structure, fabrication methods and characteristics of various composites are introduced.
- 2. Student is familiarized with Metal matrix composites and Ceramic matrix composites.

Syllabus:

Introduction to composite materials, matrix materials, reinforcement, Metal matrix composites (MMC), Ceramic matrix composites (CMC), Polymer matrix composites (PMC), Micromechanics of composites.

Course Outcome:

The student gets an insight into the various aspects of fabrication and application of composite materials in engineering.

Text Books:

- 1. ChawlaKrishana K., "Composite materials", Springer Verlag
- 2. Autar K. Kaw, "Mechanics of composite materials", CRC Press, 1999

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7201	COMPOSITE MATERIALS AND MANUFACTURING	3-0	-0: 3
	MODULES		
MODULE 1: Introdu	ction : composite materials, types , classification		
Fibers: Introduction			
applications. Boron	fibers: fabrication, structure, morphology, properties		
and application. Car	bon fibers: different preparation methods, structural	5	15
change during prep	aration, properties and application. Aramid fibers:		
fabrication, structu	re, properties and applications. Ceramic fibers:		
alumina and silicon	carbide fibers. Metallic fibers.		
MODULE 2: Matrix	materials: Polymers and its characteristics – metals:		
fiber reinforcement	of metals. Ceramic matrix materials: bonding and		
structure, effect of	flaws on strength and common ceramic matrix	5	15
materials.Interfaces	: Wettability and bonding interface in composites –		
types of bonding at	interface – Tests for interfacial strength.		
FIRST INTERNAL TEST			
MODULE 3: Meta	al matrix composites (MMC):Different fabrication		
methods of MMC -	- interface in MMC- discontinues reinforcement of	6	15
MMC.Detailed discu	ssion on mechanical properties –Applications.		
MODULE 4: Ceram	ic matrix composites (CMC): Different fabrication		
methods of CMC – ii	nterface in CMC – detailed discussion on properties –	6	15
toughness of CMC -	applications.		
SECOND INTERNAL	TEST		
MODULE 5: Polyme	er matrix composites (PMC): Different fabrication		
methods of PMC – in	10		
of PMC - applicatior	10	20	
– interface.			
MODULE 6: Microm	echanics of composites: Maximum stress and strain		
		1	1
criterion, Tsai-Hill ar	nd Tsai-Wu failure criterion (derivations)	10	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7203	Advanced Non-Conventional Machining Processes	3-0-0: 3	2015

Course Objectives:

- 1. To introduce the various non-conventional methods and their characteristics.
- 2. To familiarize the application of different non-conventional methods.

Syllabus:

Introduction to advanced machining and manufacturing process, Electro Discharge Machining process, Electron beam machining, Plasma arc machining, Ultrasonic machining, Abrasive water-jet machining, Electro chemical machining, Hybrid machining

Course Outcome:

The student gets an insight into the various aspects of non-conventional machining process and their applications.

Text Books:

- 1. Kluwer, "A new direction in manufacturing", Academic Publishers, London, 1997
- 2. Kalpakjian, "Manufacturing engineering & technology", Addison Wesley, 4nd Edition

REFERENCES:

1. Debitson A., "Hand book of precision engineering"

COURSE CODE	COURSE TITLE	CRE	DITS	
04 ME 7203	ADVANCED NON-CONVENTIONAL MACHINING PROCESSES	3-0-0: 3		
	MODULES		Sem.Exam Marks;%	
	roduction to advanced machining and manufacturing			
process - conve	ntional and unconventional machining process. Electro			
_	nining process: General principle and applications of			
-	ge machining, electric discharge grinding and electric			
_	utting processes – power circuits for EDM, mechanics of	5	15	
	n EDM, process parameters, selection of tool electrode			
	fluids, surface finish and machining accuracy,			
	f spark eroded surface and machine tool selection - Wire			
EDM, principle, a	· ·			
MODULE 2:	Non-conventional machining processes: Principles,			
	oplications of laser beam machining - general principle	-	15	
	of laser beam machining – thermal features, cutting	5		
	racy of cut. Ion beam machining, Focused ion beam			
	oment – applications.			
FIRST INTERNAL				
	ectron beam machining - generation and control of			
	for machining, theory of electron beam machining, naterial removal in EB drilling- importance of vacuum-	6	15	
	ters - effect of cutting speed, pulsed beam operation,	0	15	
heat affected zo				
MODULE 4: Plas	ma arc machining -application of plasma for machining -			
metal removal r	nechanism – process parameters -accuracy and surface			
finish and othe	r applications of plasma in manufacturing industries.	6	15	
Ultrasonic mach	ining - basic principles – equipment's -process variables,			
applications				
SECOND INTERNAL TEST				
MODULE 5: A	brasive water-jet machining - basic principles –			
equipment's -pr	ocess variables - mechanics of metal removal – MRR -	10	20	
application and	limitations, Electro chemical machining- basic principles	les		
	ocess variables, applications.			
-	orid Machining: Electro Chemical Discharge Machining			
(ECDM), principles, mechanism of material removal, process parameters, 10 20			20	
	rasonic assisted EDM, principles, applications, Electro	ctro		
chemical dischar	ge grinding, principles, applications).			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7205	Automation and Control Systems	3-0-0: 3	2015

Course Objectives:

- 1. To provide a theoretical foundation of automation and control, which are the essential for modern CIM environments.
- 2. Familiarization with various components of automation.

Syllabus:

Automation; Automation strategies; Industrial control systems; Hardware Components for Automation and Process Control; Servomechanisms; Hydraulic systems

Course Outcome:

Student gets exposed to the various aspects of Industrial automation.

Text Books:

 PatrikVenuvinod, Weiyuyin Ma, "Rapid prototyping", Kluwer Academic Publishers
T. A. Grimm & Associates, "Users guide to rapid prototyping", Society of Manufacturing Engineers (SME)

- 1. Frank W. Liou, "Rapid prototyping & engineering applications", CRC Press
- 2. Ali K. Kamarani, "Rapid Prototyping theory & practice", Manufacturing System
- 3. J. A. McDonalds, C. J. Ryall, "Rapid prototyping case book", Wiley Eastern

COURSE CODE	COURSE TITLE	CREDITS		
04 ME 7205	AUTOMATION AND CONTROL SYSTEMS	3-0	-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%	
MODULE 1: Autom	ation: Introduction to automation: definition, types			
of automation, stra	of automation, strategies merits and criticism – manufacturing plants			
and operations. Aut	and operations. Automation strategies – basic elements of automated			
system – advanced	l automation functions – levels of automations –			
automated producti	on lines.			
MODULE 2: Econor	mic and social issues – impact on labor. Production			
automation: Industr	rial control systems – process layout for automation	-		
-discrete manufact	uring industries – continuous and discrete control	5	15	
systems.				
	FIRST INTERNAL TEST			
MODULE 3: Overvie	ew of computer process control: Fundamentals of			
automated assembl	y, parts feeding devices. Production flow analysis:	8	15	
general terminolog	y and analysis. Analysis of transfer lines without	0		
storage, partial auto	mation.			
MODULE 4: Hard	lware Components for Automation and Process			
Control: Sensors-Ac	tuators-Electric Motors, Other types of actuators.			
Analog to digital co	nvertors-Digital to analog Convertors- Input/output	8	15	
devices for discre	te data- Contact input/output interfaces, Pulse			
counters and genera	ators.			
SECOND INTERNAL TEST				
MODULE 5: Contro	ol systems: Servomechanisms – digital computer			
control – controlle	er components. Hydraulic systems – pneumatic	8	20	
systems				
MODULE 6: Stepper	motor-transfer functions – block diagram algebra-	0		
signal flow graphs-F	eedback and non-feedback systems.	8	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7207	Rapid Prototyping	3-0-0: 3	2015

Course Objectives:

- 1. To provide an insight into various prototyping methods.
- 2. Familiarization with various methods of Rapid prototyping

Syllabus:

Introduction to rapid prototyping process, Stereo lithography (SL), Selective laser sinthering (SLS), Fused deposition modeling (FDM), Rapid tooling (RT), Solid Ground Curing

Course Outcome:

The student gets an insight into the various rapid prototyping process and their applications.

Text Books:

- 1. PatrikVenuvinod, Weiyuyin Ma, "Rapid prototyping", Kluwer Academic Publishers
- 2. T. A. Grimm & Associates, "Users guide to rapid prototyping", Society of Manufacturing Engineers (SME)

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7207	RAPID PROTOTYPING	3-0	-0: 3
	MODULES		
	ance of being rapid- data processing for rapid D model preparation and data interfacing for RP.	5	15
MODULE 2: Ster	reo lithography (SL): SL process, photo		
polymerization of	SL resins, absorption of laser radiation by the resin,	5	15
recoating.SL curing	and its implications, part quality and process	-	
planning			
	FIRST INTERNAL TEST		
MODULE 3: Select	ive laser sinthering (SLS): principle, indirect and		
direct SLS, process	accuracy . Selective laser cladding (SLC) - laminated	6	15
object manufacturin	g		
MODULE 4: Fused	deposition modelling (FDM) – 3D printing and		
desktop processes.	Shape deposition manufacturing – vacuum casting –	6	15
electroforming – fre	eze casting – 3D welding.		
	SECOND INTERNAL TEST		
MODULE 5: Rapid	tooling (RT): Classification of RT – indirect RT –		
applications of RP:	- heterogeneous objects, assemblies, MEMS and	10	20
other small objects,	medicine and art.		
MODULE 6: SOLID	GROUND CURING: Principle of operation, Machine		
details, Application	s. Laminated Object Manufacturing: Principle of	10	20
operation, LOM mat	erials. Process details, application.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7209	Production Scheduling	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- 1. To learn the fundamentals of different types of scheduling techniques.
- 2. To stress the importance of mass production and assembly line balancing.

Syllabus

Introduction to scheduling, Single machine scheduling, Flow shop scheduling, Job shop scheduling, Mass production management and project scheduling.

Course Outcome:

The student will learn to design and manage different types of scheduling problems.

Text Books:

- 1. R. Paneerselvam, "Production and operations management", Prentice-Hall, New Delhi, 2005
- 2. Roberta S. Russell and Bernard W. Taylor III, "Operations management", Pearson Education, Delhi, 2003

- 1. Kenneth R. Baker, "Introduction to sequencing and scheduling", John Wiley and Sons, 1974
- 2. Michael Pinedoo, "Scheduling: theory, algorithms and systems", Prentice Hall, New Delhi, 1995
- 3. Wild, R., "Mass production management", John Wiley and Sons, New York.

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7209	PRODUCTION SCHEDULING	3-0	-0: 3
	MODULES		
MODULE 1: Intro	duction to scheduling: Objectives in scheduling -		
processing characte	eristics and constraints – performance measures.	_	
Loading. Sequencin	5	15	
Employee scheduling	g		
MODULE 2: Single n	nachine scheduling – SPT rule to minimize mean flow		
time, EDD rule to m	aximum lateness – branch and bound technique to		
minimize mean tar	diness – assignment model. Parallel processors –	6	15
minimization of ma	kespan, mean weighted flowtime - McNaughton's		
algorithm, heuristic	procedures.		
FIRST INTERNAL TES	т		
MODULE 3: Flow s	hop scheduling – Extension of Johnsons's rule for 3	-	45
machine problem – I	branch and bound technique – Palmer's heuristic.	5	15
MODULE 4: Job shop	o scheduling. Introduction to dispatching rules – SPT,		
FCFS, MWKR, MOP	NR, LWKR, RANDOM – two jobs and m machines	6	15
scheduling - Giffler a	nd Thomson algorithm.		
SECOND INTERNAL	TEST		
MODULE 5: Mass pr	roduction management - basic idea of assembly line		
balancing - optimiza	ation of number of stations with given production		
rate - Minimization	of cycle time with fixed number of stations. Line	10	20
balancing algorithm	s - Kilbridge and Wester, rank positional weight		
method, COMSOAL,	Moodie and Young method.		
MODULE 6: Project s	scheduling – project network – AOA and AON - Gantt	<u> </u>	
chart – critical pa	ath scheduling. Probabilistic method for project		
scheduling – deplo	syment of resources. Activity time/cost trade-off	10	20
analysis, resource le	velling and resource allocation.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7211	Maintenance Engineering and Management	3-0-0: 3	2015

Course Objectives:

- 1. To familiarize with standard maintenance management tools.
- 2.To make the student capable of handling maintenance management of an industry, independently

Syllabus

Maintenance and its needs, Maintenance mathematics, Preventive maintenance, Corrective maintenance, Reliability centered maintenance, Maintenance costing.

Course Outcome:

The student becomes capable of employing the right tools, for addressing the various issues of maintenance management.

Text Books:

- 1. B. S. Dhillon, "Engineering maintenance", CRC Press
- 2. Gopal Krishnan, "Maintenance and spare parts management"

References:

1. S. K. Shrivastava, "Industrial maintenance management"

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7211	MAINTENANCE ENGINEERING AND MANAGEMENT	3-0-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Mainter	nance and its needs, Maintenance classification.		
Maintenance project	Maintenance project control: Maintenance project control methods,		
problems- maintena	nce management control indices.		
MODULE 2: Mainte	nance mathematics: Maintenance management and	6	
control- Elements o	f effective maintenance management.	0	15
	FIRST INTERNAL TEST		
MODULE 3: Prev	ventive maintenance (PM): Important steps for		
establishing a PN	A program. PM measures: mean preventive		
maintenance time, r	nedian preventive maintenance time, and maximum	7	15
preventive mainten	ance time – different PM models - advantages and		
disadvantages.			
MODULE 4: Correct	tive maintenance: Corrective maintenance types -		
corrective maintena	ance ensures: mean corrective maintenance time,		
median active corre	ctive maintenance time, maximum active corrective	-	
maintenance time	- different corrective maintenance mathematical	7	15
models, problems.	Approximate effective failure rate equations for		
redundant systems v	with corrective maintenance, problems.		
	SECOND INTERNAL TEST		
MODULE 5: Reliabi	lity centered maintenance: Goals and principles –	8	22
components. RCM to	echniques.	0	20
MODULE 6: Mainte	nance costing: maintenance labor cost estimation,		
standard hourly co			
corrective maintena	nce labor cost estimation, problems. Maintenance		
material cost estima	tion - different maintenance cost estimation models	8	20
- equipment own	nership cycle maintenance cost estimation -		
maintenance cost -	related indices - software maintenance costing -		
maintainability meas	sures and functions.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7213	Decision Modelling	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- 1. To make the student capable of decision making objectively
- 2. To familiarize the optimization algorithms for decision making.

Syllabus

Introduction to decision making, Multi-objective decision models, Sequential decision making, Sequential decision making (stochastic case), Unconstrained optimization algorithms for decision making.

Course Outcome:

Scientific decision making, based on multi-objective models is understood by the students.

Text Books:

- Taha H. A., "Operations research: an introduction", Maxwell Macmillan International Edition, 1989
- 2. Rao, S. S., "Optimization: theory and applications", Second Edition, Wiley Eastern, 1994.

- 1. Budnick F. S., McLeavey and R. Mojena, "Principles of operations research for management", 2/e, Richard D. Irwin Inc., Homewood, Illinois, 1991.
- 2. Hillier, F. S., and Liberman, G. J., "Introduction to operations research", McGraw-Hill International Edition, 2001

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7213e	DECISION MODELLING	3-0-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Introdu	ction to decision making: Decision analysis, decisions		
under risk, decisior	n trees – decision analysis with experimentation,	6	15
utility theory, decisio	ons under uncertainty.		
MODULE 2: Multi	-objective decision models: Introduction to multi-		
objective decision n	naking, concept of pareto-optimality, the weighting	6	15
method of solution,	analytic hierarchy process.		
	FIRST INTERNAL TEST		
MODULE 3: Sequer	ntial decision making (deterministic case):Sequential	6	15
decision models, dyr	namic programming.	Ũ	15
MODULE 4: Bellma	n's principle of optimality, forward recursion and	6	15
backward recursion,	discrete state discrete time case, continuous state		
continuous time case	e		
SECOND INTERNAL TEST			
MODULE 5: Sequer	ntial decision making (stochastic case): Stochastic		
processes, Markov p	rocesses, Markov chains, Markov decision problems.	9	
Algorithms for solvi	ng Markov decision problems, finite- stage models,	5	20
infinite stage models	5.		
MODULE 6: Unconst	trained optimization algorithms for decision making:		
Fibonacci search me	thod, golden section search method.		
Hooke and Jeeve	's method, Newton-Raphson method, Cauchy's	9	20
(Steepest descent)	method. Complexity of algorithms: complexity of		
algorithms for comb	inatorial optimization problems		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7215	Advanced Engineering Mathematics	3-0-0: 3	2015

Course Objectives:

To give the Student:-

- 1. To assist research studies in industrial management.
- 2. To firm up the mathematical base, for further studies in the specialization

Syllabus

Special functions, Applications partial differential equations, Numerical solution of partial differential equation, Tensor analysis, Analysis of variance, Basic principles of xperimentation

Course Outcome:

Strong mathematical base for further studies and research.

Text Books:

- 1. B. S. Grewal, "Higher engineering mathematics", Khanna Publishers, 2000
- 2. Michael E. Greenberg, "Advanced engineering mathematics", Pearson Education

- 1. Erwin Kreyszig, "Advanced engineering mathematics"
- 2. E. Balagurusamy, "Numerical methods", Tata McGraw Hill, 1995
- 3. Sokol Nikof, "Tensor analysis", John Wiley, New York, 2000

COURSE CODE	COURSE TITLE	CRE	DITS
04 ME 7215	ADVANCED ENGINEERING MATHEMATICS	3-0-0: 3	
	MODULES	Contact Hours	Sem.Exam Marks;%
MODULE 1: Spe	cial functions:Power series solutions of ODE –		
Legendre's equatio	6		
generating function	- Bessel's equation - Bessel's function - Recurrence	0	15
relations and orthog	onality property.		
MODULE 2: Applica	ations partial differential equations: Linear partial		
differential equatio	n of second order –elliptic, parabolic, hyperbolic	C	
equations – solut	ion of Laplace, one-dimensional heat & wave	6	15
equations.			
FIRST INTERNAL TES	T		
MODULE 3: Nume	rical solution of partial differential equation: Finite		
difference method	- solution of Laplace equation - solution of one-	6	15
dimensional heat ec	uation – Crank Nicholson method – solution of one-	0	
dimensional wave e	quation.		
MODULE 4: Tenso	r analysis: Range and summation conventions –		
transformation of co	p-ordinates- contra variant, covariant, mixed, metric	6	
and conjugate ter	nsors, Fundamental operations with Tensors –	0	15
Christopher's symbo	ls.		
SECOND INTERNAL TEST			
MODULE 5: Analysi	s of variance: One way and two way classification	9	
(single observation p		20	
MODULE 6: Basic pr	inciples of experimentation – role of randomization,	9	
replication, local cor	ntrol – basic designs –CRD, RBD, LSD.	Э	20

APJ Abdul Kalam Technological University | Cluster 4 | M.Tech in Advacned Manufactturing and Production Management 1

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7291	Seminar II	0-0-2:2	2015

Course Objectives:

- 1. To assess the debating capability of the student to present a technical topic of a higher level
- 2. To impart training to a student to face audience and present his ideas and thus creating in him self-esteem and courage that is essential for an engineer.

COURSE PLAN

Individual students are required to choose a topic of their interest from areas related to the specialization, like: Materials, Manufacturing, Industrial Engineering, Quality Management etc., preferably in-line with Seminar I and from outside the M.Tech syllabus. Presentation of seminar on that topic will be about 30 minutes. A committee consisting of at least three faculty members shall assess the presentation of the seminar and award marks to the students. Each student shall submit two copies of a write up of his / her seminar topic. One copy shall be returned to the student after duly certifying it by the Chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7293	Project Phase I	0-0-12:6	2015

Course Objectives:

To enable the students to select an emerging research area in their field of specialization.

COURSE PLAN

In Master's Project Phase-I, the students are expected to select an emerging research area in the field of specialization. After conducting a detailed literature survey, they should compare and analyze research work done and review recent developments in the area and prepare an initial design of the work to be carried out as Master's Project. It is mandatory that the students should refer National and International Journals and conference proceedings while selecting a topic for their thesis. He/She should select a recent topic from a reputed International Journal, preferably IEEE/ACM. Emphasis should be given for introduction to the topic, literature survey, and scope of the proposed work along with some preliminary work carried out on the thesis topic.

Students should submit a copy of Phase-I Project report covering the content discussed above and highlighting the features of work to be carried out in Phase-II of the thesis. The candidate should present the current status of the Project work and the assessment will be made on the basis of the work and the presentation, by a panel of internal examiners in which one will be the internal guide. The examiners should give their suggestions in writing to the students so that it should be incorporated in the Phase–II of the project.

Master's Project-1 will undergo an evaluation by a panel of examiners including at least one external examiner appointed by university and internal examiner.

SEMESTER - IV

<u>Syllabus</u>

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 ME 7294	Project (Phase 2)	0-0-21:12	2015

Pre-requisites: Nil

In the fourth semester, the student has to continue the project work and after successfully finishing the work, he / she has to submit a detailed bounded project report. The evaluation of M Tech Project will be carried out by a panel of examiners. The work carried out should lead to a publication in a National / International Conference or Journal. The papers received acceptance before the M.Tech evaluation will carry specific weightage.