

ST.JOSEPH'S College of Engineering and Technology, - P a l a I -

Choondacherry P.O., Palai, Kottayam Pin 686579, Kerala,India Phone: +91 4822-239700, 239301, 239302 Email: info@sjcetpalai.ac.in • Website: www.sjcetpalai.ac.in

Criterion – 2

2.6 Student Performance and Learning Outcome

2.6.1 Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated

Submitted to:

National Assessment and Accreditation Council

Criterion – 2

2.6.1 Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING CONTENTS

Sl No	Sub Section
1	<u>CO–PO–PSO mapping and justification - Sem 1</u>
2	<u>CO–PO–PSO mapping and justification - Sem 2</u>
3	<u>CO-PO-PSO mapping and justification - Sem 3</u>
4	<u>CO-PO-PSO mapping and justification - Sem 4</u>
5	<u>CO-PO-PSO mapping and justification - Sem 5</u>
6	<u>CO-PO-PSO mapping and justification - Sem 6</u>
7	<u>CO-PO-PSO mapping and justification - Sem 7</u>
8	<u>CO-PO-PSO mapping and justification - Sem 8</u>
9	<u>CO-PO-PSO attainment calculation process</u>

MAT 101	LINEAR ALGEBRA AND	L	Т	Р	CREDIT	Year of Introduction
	CALCULUS	3	1	0	4	2019

Prerequisite: A basic course in one-variable calculus and matrix theory.

Course Outcomes: After completion of the course the student will be able to:

CO 1	Solve systems of linear equations, diagonalize matrices and characterize quadratic forms
CO2	Compute the partial and total derivatives and maxima and minima of multivariable functions.
CO3	Compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and center of gravity of plane laminas
CO4	Perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent
CO5	Determine the Taylor and Fourier series expansion of functions and learn their applications.

Mapping of course outcomes with program outcomes (Minimum requirement):

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2	1	-	-	1	2	-	2	1	-	-
CO2	3	3	3	3	2	1	-	-	1	2	-	2	1	-	-
CO3	3	3	3	3	2	1	-	-	1	2	-	2	1	-	-
CO4	3	2	3	2	1	1	-	-	1	2	-	2	1	-	-
CO5	3	3	3	3	2	1	-	-	1	2	-	2	1	-	-
Avg	3	2.8	3	2.8	1.8	1	-	-	1	2	-	2	1.6	-	-

1

Justification for CO-PO Mapping:

СО	РО	LEVEL	REMARK S
	PO 1	3	By understanding the concept of matrix theory, the students will beable to apply the knowledge in complex engineering problems.
CO1	PO 2	3	By understanding the fundamental concept of matrix, the students will be able to identify, formulate and analyze simple engineering problems.
	PO 3	3	By understanding the fundamental concept of diagonalization of matrices and quadratic forms the helps the student in lifelong learning in the context of technology change.
	PO4	3	By understanding the fundamental concept of matrix theory, the students will be able to do analysis and interpretation of data
	PO5	2	By understanding the fundamental concept of linear equations and matrix theory the students will be able to apply appropriate techniques in complex engineering activities.
	PO6	1	The knowledge of fundamental concept of matrix theory help to communicate effectively on complex engineering activities with the engineering community and with society at large.
	PO9	1	By understanding the concept of matrix theory, the students will beable to engage in continuous learning.
	PO10	2	Understanding matrices helps students for writing effective reports.
	PO12	2	The matrix theory concepts help students to adapt emerging Information and Communication Technologies by providing innovative ideas and solutions to novel problems that is identified.
	PSO1	1	The matrix theory concepts help students to apply fundamental knowledge in Electronics and Computer Engineering to analyse and design hardware and software systems so as to understand and solve engineering problems.

	PO 1	3	By understanding the fundamental concept of differential calculus of functions the students will be able to apply the knowledge in complex engineering problems.
	PO 2	3	By understanding the fundamental concept of differential calculus of functions the students will be able to apply the knowledge for analysis and interpretation of data.
	PO3	3	By understanding multivariable calculus, the students will be able to model and study high dimensional systems.
	PO4	3	By understanding the multivariable calculus and differential equations the students will be able to explain natural phenomenon in good manner.
	PO5	2	By understanding the modern multivariable calculus, the students will be able to apply appropriate techniques in complex engineering activities.
CO2	PO6	1	By understanding the concept of differential equations, the students will be able to engage in continuous learning.
	PO9	1	The knowledge of fundamental concept of differential equation help to communicate effectively on complex engineering activities
	PO10	2	The concept of multivariable calculus helps students to adapt emerging Information and Communication Technologies by providing innovative ideas and solutions to novel problems that is identified.
	PO12	2	The knowledge of multi variable calculus and differential equations help in designing solutions to complex problems
	PSO1	1	Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field

	PO 1	3	By understanding the fundamental concept of multiple integrals can be used to create mathematical models in order to arrive into an optimal solution.							
	PO 2	3	By understanding the fundamental concept of multiple integrals, the students will be able to apply the knowledge for analysis and interpretation of data.							
	PO 3	3	By understanding the concept of the double integrals helps in designing solutions for engineering problems							
	PO 4	3	The knowledge of double integrals concepts helps the student in lifelong learning in the context of technology change.							
-	PO 5	2	By understanding the concept of integration can be used to create and apply appropriate techniques in solving engineering problems.							
	PO 6	1	By understanding the concept of integration, the students will be able to engage in continuous learning							
CO3	РО9	1	The knowledge of fundamental concept of integration helps to communicate effectively on complex engineering activities							
	PO10	2	Understanding integration helps students for writing effective reports.							
	PO12	2	The concept of double integration helps students to adapt emerging Information and Communication Technologies by providing innovative ideas and solutions to novel problems that is identified.							
	PSO1	1	Apply knowledge of mathematics , science and engineering to design commission and maintain various type of electrical systems and address challenges in the field							

			By understanding infinite series, the student will be able to identify							
	PO 2	2	formulate and analyze simple engineering problems.							
	PO 3	3	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to design solutions for simple engineering problems.							
	PO4	2	The knowledge of infinite series provides technique for solving simple engineering problems.							
	PO 5	1	The knowledge of fundamental concept of infinite series helps to communicate effectively on complex engineering activities							
CO4	PO 6	1	By understanding various tests can be applied to assess societal, legal and cultural issues.							
	PO 9	1	By understanding infinite series, the student will be able to engage in continuous learning.							
	PO10	2	Understanding infinite series helps students for writing effective reports.							
	PO12	2	By understanding the concept of infinite series will enable students to engage in lifelong learning.							
	PSO1	1	Apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field							
	PO 1	3	By understanding the concept of Taylor series provides							
CO5	PO 2	3	different techniques in solving engineering problems.By understanding the fundamental concept of Taylor series the students will be able to apply the knowledge for analysis and interpretation of data.							
	PO 3	3	By understanding the concept of Fourier series, the students will be able to design system components.							
	PO 4	3	By understanding the concept of series helps the students to draw valid conclusions from the data							
	PO 5	2	Understanding the concept of series can be used to create and apply appropriate techniques in solving engineering problems.							
	PO 6	1	By understanding the concept of series make students to prepare fective reports and to make effective presentation							
	PO 9	1	By understanding the concept of Fourier series, the students will able to engage in continuous learning							
	PO10	2	dern techniques are used in understanding the problems n the society							

PO12	2	By understanding the concept of Fourier series, the students will be able to cop- up with the technology change
PSO1	1	Apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field

EST 110	ENGINEERING GRAPHICS	L	Т	Р	CREDIT	Year of Introduction
		2	0	2	3	2019

Course Outcomes (CO)

After the successful completion of this course, students will able to

No.	Course outcomes	Knowledge Level
EST 110.1	CO1: Draw the projection of points and lines located in different quadrants	К3
EST 110.2	CO2: Prepare multiview orthographic projections of objects by visualizing them indifferent positions	К3
EST 110.3	CO3: Draw sectional views and develop surfaces of a given object	К3
EST 110.4	CO4: Prepare pictorial drawings using the principles of isometric and perspective projections to visualize objects in three dimensions.	К3
EST 110.5	CO5: Convert 3D views to orthographic views	К3
EST 110.6	CO6: Obtain multiview projections and solid models of objects using CAD tools	К3

CO – PO Matrix

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
EST 110.1	3	-	-	-	-	-	-	-	-	-	-	-	3	0
EST 110.2	3	-	-	-	-	-	-	-	-	-	-	-	3	0
EST 110.3	3	1	-	-	-	-	-	-	-	-	-	-	3	0
EST 110.4	3	-	-	-	-	-	-	-	-	1	-	-	3	0
EST 110.5	3	-	-	-	-	-	-	-	-	2	-	-	3	0

EST 110.6	3	-	-	-	3	-	-	-	-	3	-	-	3	0
EST 110	3	1	-	-	3	-	-	-	-	2	-	-	3	0

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	Mapping Level (3/2/1)	Justifications
CO1 - PO1	3	Graduates are able to apply Engineering fundamentals related to 2D orthographic projection of lines to develop Engineering drawings related to complex design problems.
CO2-PO1	3	Graduates are able to apply Engineering fundamentals related to 2D orthographic projection of solids to develop Engineering drawings related to complex design problems.
CO3- PO1	3	Graduate will be able to apply the concept of section to describe the concealed features of parts designed as a part of solution to Engineering problems.
СОЗ –РО2	1	Graduate will be able to analysis and infer 3 Dimensional Models related to complex problems.
CO4 – PO1	3	Graduate will be able to apply knowledge related to isometric projection to develop 3 Dimensional models as a part of solution related to design problems.
CO4 – PO10	1	Graduate will be able to convey solutions for complex engineering problems in a better way using 3 dimensional models developed using the concept of perspective projection and isometric projection.
CO5 – PO1	3	Graduate will be convert 3 Dimensional models to 2 dimensional orthographic views for simplified solutions for design problems
CO5 – PO10	2	Graduate will be able to use simplified orthogonal views to describe delicate and complex features of a 3 Dimensional models.
CO6 - PO1	3	Usage of CAD software package will help graduates apply the Engineering knowledge related to orthographic projection to 2 Dimensional drawing sand 3 Dimensional models as a part of solutions to complex problems.
CO6-PO5	3	Use of Cad Software helps graduate to become familiar with the usage of modern IT tools for modeling solutions of complex Engineering Problems.
CO6-PO10	3	The exploded views of 3D models developed using a Cad software helps graduate to effectively convey order of assembly of different parts.
CO1 -PSO1 CO2 -PSO1 CO3-PSO1 CO4-PSO1 CO5-PSO1 CO6-PSO1	3	Graduates are able to understand how to apply orthographic projection of lines, simple solids, isometric projection of solids, 2D &3D drawings of CAD software packages, sections, developments and perspective projection of simple solids etc for for design various types of electrical systems.

CYT 100	ENGINEERING CHEMISTRY	L	Т	Р	CREDIT	Year of Introduction
100		3	1	0	4	2019

Course outcomes: After the completion of the course the students will be able to

CO 1	Apply the basic concepts of electrochemistry and corrosion to explore its possible applications in various engineering fields.
CO 2	Understand various spectroscopic techniques like UV-Visible, IR, and NMR and theirapplications.
CO 3	Apply the knowledge of the analytical method for characterizing a chemical mixture or a compound. Understand the basic concept of SEM for surface characterization of nanomaterials.
CO 4	Learn about the basics of stereochemistry and its application. Apply the knowledge of conducting polymers and advanced polymers in engineering.
CO 5	Study various types of water treatment methods to develop skills for treating wastewater.

Mapping of course outcomes with program outcomes

	PO	РО	РО	PSO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	1		1	2										
	1	1	-	-	_	-	-	-	-	-	-	-	1	-	-
CO3	1	1	-	1	2	_	-	-	-	-	-	-	1	1	-
CO4	2	1	-		-	_	-	-	-	-	-	-	1	1	-

CO5	1			1			3								
		-	-		-	-		-	-	-	-	-	1	-	-
Avg.	1.2			1			3								
		1.25	1		2	-		-	-	-	-	-	1	1	-

СО	РО	LEVEL	R E M A
			R K S
CO1	PO1	1	Information gathered on electrochemistry and corrosion can be used to elucidate variousEngineering problems
	PO2	2	Understanding the basic principles of electrochemistry and corrosion help to assess recentresearch literature and also to scrutinize the issues related to the area of electrochemical engineering.
	PO3	1	Knowledge on the Electrochemical basis of corrosion and its prevention method can be utilized insolving problems related to material corrosion and also help to design various energy storage

			systems.
CO2	PO1	1	Knowledge on spectrochemical techniques helps to find solutions to engineering problems likestructure analysis of materials
	PO2	1	Understanding the basic concepts of spectroscopic techniques can be utilized for the analysis of the structural identification of the materials of importance
	PO4	1	Information acquired on the structural identification of compounds can be used to performstudies to solve complex problems
	PO5	2	Spectroscopy can use as a modern tool for the prediction and design of materials having applications in the field of modern engineering materials
	PS O1	1	The spectroscopic techniques can be used as a method for the prediction, structural elucidation, designing and synthesizing of modern engineering materials
CO3	PO1	1	Understanding the basic principle of chromatography and thermal characterization techniques can be used to solve problems related to these fields in engineering stream
	PO2	1	Analytical techniques help to design and select resources for various engineering activities.
	PO4	1	Research based on thermoanalytical technique such as TGA, DTA and SEM etc. helps to design and reinforce the properties of engineering polymers
	PO5	2	Knowledge on updated analytical techniques provide an effective route for the prediction and implementation of complex engineering accomplishments
	PS O1	1	The analytical techniques can be used as a device for the forecast, design and enactment of modern engineering materials

	PSO2	1	Information on basic theories of chromatography and thermal analysis utilized for determining materials properties, transformations, characterizations and finally designing of them
CO4	PO1	2	Solve engineering problems by applying the knowledge on engineering materials like polymers and stereochemistry.
	PO2	1	Stereochemical study of engineering materials used to identify materials for engineering constructions and modeling.
	PSO1	1	By learning stereochemistry and polymers the students will be able to get a practice to work withmedicinal industry.
	PSO2	1	In construction field knowledge on advanced polymers are needful.
CO5	PO1	1	Knowledge on water treatment methods can be used to solve environmental related problems
	PO4	1	By utilizing the principles of water treatment methods students will be able to design novel watertreatment plants.
	PO7	3	Knowledge on various water treatment methods can be utilized for the sustainabledevelopment based on societal, health and environmental context.
	PSO1	1	Knowledge on water treatment methods can be used for waste water treatment as a sustainable solution for environmental protection.

HUN 101	LIFE SKILLS	L	Т	Р	CREDIT	Year of Introduction
		2	0	2		2019

Course Outcomes

After the completion of the course the student will be able to:

CO 1	Define and Identify different life skills required in personal and professional life
CO 2	Develop an awareness of the self and apply well-defined techniques to cope with emotions and stress.
CO 3	Explain the basic mechanics of effective communication and demonstrate these throughpresentations.
CO 4	Take part in group discussions
CO 5	Use appropriate thinking and problem solving techniques to solve new problems
CO 6	Understand the basics of teamwork and leadership

CO-PO-PSO Mapping

C	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1 2	PSO 1	PSO 2	PSO 3
	-		5		0	0	-	1	,	0	1	2	-		5
1	-	-	-	-	-	2	-	1	2	2	1	3	-	-	-
2	-	-	-	-	-	-	-	-	3	-	-	2	-	-	-
3	-	-	-	-	-	1	-	-	1	3	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	3	-	1	-	-	-
5	-	3	2	1	-	-	-	-	-	-	-	-	-	-	-
6	_	_	-	_	_	1	_	-	3	-	_	_	_	-	-

CO – PO – PSO Mapping Justification

CO	РО	MAPPI NG	JUSTIFICA TION
	PO6	2	Graduate Need to apply the contextual knowledge to assess different life skillsrequired in personal and professional life
	PO8	1	Graduates Need to apply professional ethics and responsibilities in life skills adopted in their personal and professional life
СО	PO9	2	Graduate Need to act effectively as an individual, or as a member or leader in a group for adopting different life skills.
1	PO1 0	2	Graduates Need to communicate effectively with others to identify differentlife skills required in their personal and professional life
	PO1 1	1	Graduates Need to manage projects in multi-disciplinary environments using their life skills.
	PO1 2	3	Graduate Need to identify the need for, and have the preparation and abilityto engage in independent and life-long learning in the broadest context of technological change using different life skills.
СО	PO9	3	Graduate Need to act effectively as an individual, or as a member or leader in a group for awareness of the self and apply well-defined techniques to cope with emotions and stress.
2	PO1 2	2	Graduate Need to identify the need for, and have the preparation and abilityto engage in independent and life-long learning in the broadest context of well-defined techniques to cope with emotions and stress.
	PO6	1	Graduate Need to apply the contextual knowledge to assess effective communication and demonstrate these through presentations.
CO 3	PO9	1	Graduate Need to act effectively as an individual, or as a member or leader in a group for adopting effective communication through presentations
	PO1 0	3	Graduates Need to communicate effectively with others and demonstrate these through different presentations
	PO1 0	3	Graduates Need to communicate effectively with others to improve their skillsduring group discussions and debates

CO 4	PO1 2	1	Graduate Need to identify the need for, and have the preparation and abilityto engage in independent and life-long learning in the broadest context of well-defined techniques for excelling in group discussions and debates.
CO 5	PO2	3	Graduate Need to Identify and formulate appropriate thinking and problem solving techniques to resolve new problems.
	PO3	2	Graduate Need to design solutions for complex engineering problems and design system components or processes for the public with the cultural, societal and environmental considerations.
	PO4	1	Graduate Need to conduct investigations, analysis, interpretation of data, and synthesis of the information for formulating different problem solving techniques
CO	PO6	1	Graduate Need to apply the contextual knowledge to assess different techniques for effective teamwork and leadership
6	PO9	3	Graduate Need to act effectively as an individual, or as a member or leader in a team for a better display of leadership qualities.

EST 120	BASICS OF CIVIL AND	L	Т	Р	CREDIT	Year of Introduction
	ENGINEERING	4	0	0	4	2019

Pre-requisite: NIL

Course Outcome: After the successful completion of this course, the student will be able to:

EST120.1	Recall the role of civil engineer in society and to relate the various disciplines of civil engineering
EST 120.2	Explain different types of buildings, building components, building materials and building construction
EST 120.3	Describe the importance, objectives and principles of surveying
EST 120.4	Summarize the basic infrastructure services MEP, HVAC, elevators, escalators and ramps
EST 120.5	Discuss the materials, energy systems, water management and environment for green buildings
EST 120.6	Analyse thermodynamic cycles and calculate its efficiency
EST 120.7	Illustrate the working and features of IC Engines.
EST 120.8	Explain the basic principles of Refrigeration and Air Conditioning.
EST 120.9	Describe the working of hydraulic machines
EST 120.10	Explain the working of power transmission elements.
EST 120.11	Describe the basic manufacturing, metal joining and machining processes

CO-PO matrices of courses selected

CO	P	P	P	P	P	P	P	P	P	P	P	P	PS	P
	0	0	0	0	0	0	0	0	0	0	0	0	0	S O
	1	2	3	4	5	6	7	8	9	1	1		1	2
EST120 .1	3	-	-	1 2	-	3	2	2	-	-	-	-	-	-
EST120 .2	3	2	-	1	3	-	-	3	-	-	-	-	-	-
EST120 .3	3	2	-	-	3	-	-	-	2	-	I	-	-	-
EST120 .4	3	2	-	-	3	-	-	-	2	-	I	-	-	-
EST120 .5	3	2	-	-	3	2	3	-	2	-	-	-	-	-
EST120 .6	3	2	-	-	-	-	-	-	-	-	-	-	-	-
EST120 .7	3	1	-	-	-	-	-	-	-	-	-	-	-	-
EST120 .8	3	1	-	-	-	-	-	-	-	-	-	-	-	-
EST120 .9	3	2	-	-	-	-	-	-	-	-	-	-	-	-
EST120 .10	3	1	-	-	-	-	-	-	-	-	-	-	-	-
EST120 .11	3	-	-	-	-	-	-	-	-	-	-	-	-	-
AVG.	3	1. 6 7	-	1	3	2 5	2. 5	2. 5	2	-	-	-	-	1

JUSTIFICATION FOR CO-PO MAPPING:

СО	PO	LEV EL	REMAR KS						
EST1 20. 1	PO 1	3	Students will be able to know the role of a civil engineer in a society and understand the various fields of civil engineering such as structural, transportation, water resources, environmental engineering						
	PO 6	3	Students will be able to apply their knowledge to the society with respect to certain standards						
	PO 7	2	Students will be able to consider environmental impacts for a sustainable development						
	PO 8	2	Students can apply professional ethics and standards in the field of civil engineering						
EST1 20.	PO 1	3	Students will be able to know the various types of buildings, components, materials and construction methods						
2	PO 2	2	Students will be able to analyse engineering problems related to buildings, components, materials and construction methods						
	PO 4	1	Students will be able to carry research/ field studies, experimental analysis on various types of buildings and its components						
			Students will be able to apply appropriate techniques, modern technologies						
	PO 5	3	with the support of IT in designing, planning and implementation of a building project						
	PO 8	3	Students can apply professional ethics and mandatory standards in all phases of a civil engineering project to ensure the compliance on quality						
EST1 20.3	PO 1	3	Students will be able to know the various importance and objectives of surveying for a civil engineering project						
	PO 2	2	Students will be able to do preliminary survey in prior to the implementation of a civil engineering project						
	PO5	3	Students will be able to apply appropriate techniques (Total station, Dumpy level), modern technologies with the support of IT, GIS, GPS platforms for surveying						
	PO 9	2	Students can adopt a participatory approach with good teamwork for effective surveying to minimize the errors						

	PO	3	Students will be able to apply the basic engineering knowledge to select								
	1		infrastructure services, HVAC, elevators, escalators and ramps								
EST1	PO 2	2	Students will be able to analyse the need, location and implementation of infrastructure services, HVAC, elevators, escalators and ramps in a building								
20. 4	PO 5	3	Students will be able to apply appropriate techniques, modern technologies with the support of IT for all indoor and outdoor infrastructure services								
	PO 9	2	Students can adopt a participatory approach for the planning and selection of basic infrastructure services								
EST1 20.	PO 1	3	Students will be able to apply the basic engineering knowledge to design a green building by considering social, environmental aspects								
5	PO 2	2	Students will be able to analyse the importance of green building concept to conserve energy, water etc.								
	PO 5	3	Students will be able to apply appropriate techniques, modern technologies with the support of IT for energy and water management aspects of greenbuilding								
	PO 6	2	Students will be able to contribute the concept of green building, energyconservation, water conservation and apply their knowledge to the society with respect to certain standards								
	PO 7	3	Students will be able to consider environmental benefits for a sustainable development with respect to green building concept								
	PO 9	2	Students can adopt a participatory approach to give awareness on green buildings, energy conservation and water management practices								
EST120 .6	PO 1	3	Graduates can apply engineering fundamentals related to thermodynamics to understand the thermodynamics problems								
	PO 2	2	Graduates can identify the different thermodynamic devices based on thermodynamic laws								
EST1 20. 7	PO 1	3	Graduates able to apply engineering fundamentals to understand the classification of engines and distinguish them based on their respective working principles								
	PO2	1	Graduate will be able to identify the constraints associated with effectiveness of different engines								
EST1 20. 8	PO 1	3	Graduate will be able to apply the engineering fundamentals to explain the type of refrigeration process and evaluate them based on their applications								

	PO2	1	Graduate will be able to identify the thermodynamic applications specific to provide comfort conditions to industries and humans
EST1 20.	PO1	3	Graduate will be able to apply the engineering fundamentals to explain working of hydraulic machines
9	PO 2	2	Graduate will be able to identify the hydraulic applications specific to industries and small scale.
EST1 20.10	PO1	3	Graduate will be able to apply the engineering fundamentals to explain different power transmission devices.
	PO2	1	Graduates can identify the different power transmission devices based on application.
EST1 20. 11	PO1	3	Graduates will be able to interpret the application of different manufacturing processes used in the engineering field.

ESL 120	CIVIL WORKSHOP	L	Т	Р	CREDIT	Year of Introduction
		0	0	2	1	2019

Pre-requisite:

Course Outcome: After the successful completion of this course, the student will be able to:

ESL120. 1	Name different devices and tools used for civil engineeringmeasurements	K2
ESL120. 2	Explain the use of various tools and devices for various fieldmeasurements	K2
ESL120. 3	Demonstrate the steps involved in basic civil engineering activitieslike plot measurement, setting out operation, evaluating the natural profile ofland, plumbing and undertaking simple construction work.	K2
ESL120. 4	Choose materials and methods required for basic civil engineeringactivities like field measurements, masonry work and plumbing.	K2
ESL120. 5	Compare different techniques and devices used in civil engineeringmeasurements	K2

СО	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS
	0	0	Ο	0	Ο	0	0	Ο	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
ESL120. 1	1	-	-	-	1	1	-	-	2	2	-	-	-	-
ESL120. 2	1	-	-	-	1	1	-	-	2	2	-	-	-	-
ESL120. 3	1	-	-	-	1	1	-	2	2	2	-	-	-	-
ESL120. 4	1	-	-	-	1	1	-	2	2	2	-	-	-	-
ESL120. 5	1	-	-	-	1	1	-	-	2	2	-	-	-	-
ESL120	1				1	1		2	2	2			-	-

	DO1	1	Enumerate the various tools and devices used in Civil Engineering
	POI	1	measurements
	PO5	1	Understand the advanced surveying equipment used in Civil Engineering
	DOC	1	Define the various civil engineering tools and equipment used in real-life
ESL120.1	POo	1	construction practices.
	DOG	2	Work effectively as individual or team while handling the different Civil
	P09	Z	Engineering tools and measuring devices
	PO10	2	Illustrate the measurements and readings obtained from the Civil
	1010	2	Engineering
			equipment for the study of construction site and for further site plan.
	PO1	1	Enumerate the various tools and devices used in Civil Engineering
	D 0 F		measurements
	PO5	l	Understand the advanced surveying equipment used in Civil Engineering
ESI 120.2	PO6	1	Apply the comprehension of civil engineering tools and equipment in real- life
ESL120.2			construction practices
	DOG	-	Work effectively as individual or team while handling the different Civil
	P09	2	Engineering tools and measuring devices
	DO10	2	Illustrate the measurements and readings obtained from the Civil
	POIU	Z	Engineering
			equipment for the study of construction site and for further site plan.
	PO1	1	Understand the steps involved in various Civil Engineering practices
	PO5	1	Operate various civil engineering tools used in basic civil engineering
			like setting out
			Apply the knowledge of basic civil engineering in real-life construction
EST 130.3	PO6	1	practices
ESL120.3	DOP	2	Apply ethical principles in the Construction field activities by following
	100	2	the
			building construction norms and regulations.
	PO9	2	work effectively as individual or team while carrying out basic civil
			engineering experiments
	PO10	2	Illustrate the measurements and readings obtained from the Civil Engineering
			equipment for the study of construction site and for further site plan
ESL120.4	PO1	1	Understand the various materials and methods used in Construction
			practices

	PO5	1	Apply the most appropriate construction practices and desired tools for basic
			civil engineering activities.
	PO6	1	Apply the comprehension of civil engineering tools and methods in real- life
			construction practices.
	PO8	2	Apply ethical principles in the Construction field activities by following the
			building construction norms and regulations.
	DOO	2	Work effectively as individual or team while handling the different Civil
	PO9	2	Engineering tools and measuring devices
	PO10	2	Illustrate the measurements and readings obtained from the Civil Engineering
			equipment for the study of construction site and for further site plan.
	PO1	1	Understand the various materials and methods used in Construction practices
	PO5	1	Compare the various construction practices and tools used in basic civil engineering activities.
ESL 120.5	PO6	1	Apply the best civil engineering tools and methods in real-life construction
			practices.
	PO9	2	Work effectively as individual or team while handling the different Civil
	10/	-	Engineering tools and measuring devices
	PO10	2	Illustrate the measurements and readings obtained from the Civil Engineering
			equipment for the study of construction site and for further site plan.

ESL 120	MECHANICAL ENGINEERING WORKSHOP	L	Т	Р	CREDIT	Year of Introduction
	WORKSHUP	0	0	2	1	2019

Course Outcomes (CO)

After the successful completion of this course, students will able to

No.	Course outcomes	Knowledge Level
6	Identify Basic Mechanical workshop operations in accordance with the material andobjects	K1
7	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades	К2
8	Apply appropriate safety measures with respect to the mechanical workshop trades	К3

CO – PO Matrix

C O	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P 0 1 0	PO 0 1 1	P 0 1 2	P S O 1	P S O 2	PSO3
6	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ave r a g e	2	-	-	-	-	-	-	-	-	-	-	-	-	_	-

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	Mapping Level (3/2/1)	Justifications
CO6 – PO1	2	Graduates are able to identify and select mechanical tools for engineering problems by applying fundamentals in material science. and engineering.
CO7 – PO1	2	Graduates will be able to identify the tools for each function and can cater to the needs of other individuals and bring out collective results.
CO8-PO1	2	Graduates will be able to communicate with industry, society and other technical areas with proper nomenclature and dimensions

CYL 120	ENGINEERING CHEMISTRY	L	Т	Р	CREDIT	Year of Introduction
	LAD	0	0	2	1	2019

Course outcomes: After the completion of the course the students will be able to

CO 1	Understand and practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses.
CO 2	Develop skills relevant to synthesize organic polymers and acquire the practical skill to use TLC for the identification of drugs
CO 3	Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing and interpreting the IR spectra and NMR spectra of some organic compounds.
CO 4	Acquire the ability to understand, explain and use instrumental techniques for chemical analysis.
CO 5	Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
CO 6	Function as a member of team, communicate effectively and engage in future learning. Also understand how chemistry addresses social, economical, and environmental problems and why it is an integral part of curriculum.

Mapping of course outcomes with program outcomes

	P O 1	P 0 2	P 0 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PS O 1	PS O 2	PS 0 3
CO 1	3	-	-	-	2	-	-	_	_	-	-	3	1	-	-
CO 2	3	-	-	-	3	-	-	I	-	-	-	3	1	1	-
CO 3	3	-	-	-	3	-	-	Ι	-	-	-	3	1	-	-
CO 4	3	-	-	-	3	-	-	-	-	-	-	3	1	1	-
CO 5	3	-	-	-	1	-	-	I	-	-	-	3	-	1	-
CO 6	3	-	-	-	1	-	-	-	_	-	-	3	1	1	-
Avg.	3	-	-	-	2	-	-	-	-	-	-	3	1	1	-

Justification for CO-PO Mapping

со	PO	LE V E L	REMAR KS
C 0 1	PO 1	3	Basic knowledge on quantitative chemical analysis is very useful for the successful conduct oftechnical works related to engineering chemistry
	PO 5	2	A deep understanding of quantitative chemistry will help the engineering graduate to address the quantification of chemical errors in diverse engineering fields
	P O 12	3	Student will be able to apply the basic quantitative chemical analysis techniques in variousstudies.
	PS O 2	1	For the immediate identification and calculation of chemical errors elementary understanding in quantitative chemical analysis is very needful
C 0 2	PO 1	3	Understanding the basic principle of chromatography techniques can be used to solveproblems related to these fields in engineering stream
	PO 2	3	Basic knowledge on chromatography and organic polymers help to design and selectresources for various engineering activities
	P O 12	3	Research based on chromatography and synthesis of organic polymers helps to design andreinforce the properties of engineering polymers

	PS O 1	1	The chromatographic techniques can be used as a device for the forecast, design and enactment of modern engineering materials
	PS O 2	1	To grow professionally in their careers via the use of spectroscopic techniques for the prediction and design of modern instruments.
C 0 3	PO 1	3	Knowledge on spectrochemical techniques such as IR and NMR help to find solutions to engineering problems like structure analysis of materials
	PO 2	3	Understanding the basic concepts of spectroscopic techniques can be utilized for the analysis of the structural identification of the materials of importance.
	P O 12	3	Information acquired on the structural identification of compounds can be used to performstudies to solve complex problems
	PS O 1	1	The spectroscopic techniques can be used as a tool for the prediction, structural elucidation, designing and synthesizing of modern engineering materials
C 0 4	PO 1	3	To study the basic ideas of instrumental techniques for chemical analysis help to bridge theconcept of theory of chemistry to practical applications in engineering fields
	PO 2	3	Students will be able to solve engineering problems related to instrumentational chemistry
	PO 12	3	Gathered Information on the instrumental analysis in chemistry can be utilized to conductstudies to solve problems in modern engineering materials

	PS O 1	1	The basic knowledge in instrumental analytical techniques in chemistry help to overcome thechallenges faced in chemical engineering fields
	PS O 2	1	Characterization methods via instruments based on chemical knowledge is needful forresolving issues in modern materials synthesis
C 0 5	PO 1	3	With the basic information in chemical reactions, reaction conditions and safety of chemicals students can successfully design and conduct a chemical reaction of specific importance
	PO 2	1	By using the knowledge on chemical reagents and solvents efficacious design of an object orprocess in engineering field if possible.
	P O 12	3	Can Solve chemical engineering problems by the acquaintance of theories of basic chemical reactions
	PS O 2	1	Deep understanding of experimental procedures in chemistry helps to bridge the basic science knowledge with practical applications
CO6	PO1	3	Doing lab experiments as a member of team help the students to communicate effectively and engage actively in future learning
	PO2	1	Team works during lab experiments facilitates students sharing attitude and helpingmentality.
	P O 12	3	With the help of basic knowledge in experiments on water chemistry can effectively use tosolve problems related to waste water management and environmental pollution
	PS O 1	1	By utilizing the principles of chemical experiments and safety students will be able to designnovel plants of specific importance

	PS O 2	1	Knowledge on various chemical reactions and methods students can effectively solve issues of societal, health and environmental significance
--	--------------	---	--

EST 100	ENGINEERING MECHANICS	L	Т	Р	CREDIT	Year of Introduction
		2	1	0	3	2019

Prerequisite: Nil

Course Outcomes: After completion of the course the student will be able to:

EST	Recall principles and theorems related to rigid body	K2
1	mechanics	
00.1		
EST	Identify and describe the components of system of	K3
1	forcesacting on the rigid	
00.2	body.	
EST	Apply the conditions of equilibrium to various	K3
1	practical problems involving	
00.3	different force system	
EST	Choose appropriate theorems, principles or formulae to	K3
1	solveproblems of	
00.4	mechanics	
EST	Solve problems involving rigid bodies, applying the	K3
1	properties of distributed	
00.5	areas and masses	

CO PO PSO MAPPING

	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
EST100. 1	2	2	-	-	-	-	-	-	-	-	-	-		
EST100. 2	3	3	-	-	-	-	-	-	-	-	-	-		
EST100. 3	3	3	-	-	-	-	-	-	-	-	-	-		
EST100. 4	3	3	-	-	-	-	-	-	-	-	-	-		
EST100. 5	3	3	-	-	-	-	-	-	-	-	-	-		
EST100	2.80	2.80	_	-	-	-	-	-	-	-	-	-		

JUSTIFICATION

СО	РО	LEVE L	REMARK S
	PO 1	2	The student will be able to solve complex engineeringproblems.
EST100. 1	PO 2	2	The student will be able to solve complex engineeringproblems.
	PO 1	3	The knowledge of representing and solving problems in three dimensions.
EST100.2	PO 2	3	The knowledge of representing and solving problems in three dimensions.
	PO 1	3	The idea of properties of different cross sections that an engineer has to encounter in professional life is an important engineeringknowledge.
EST100. 3	PO 2	3	The idea of properties of different cross sections that an engineer has to encounter in professional life is an important engineering knowledge.

	PO 1	3	Students will be able to apply appropriate theorems to solve the problems.
EST100. 4	PO 2	3	Students will be able to apply the principles or formulae forsolving the problems
	PO 1	3	Students will be able to solve problems on rigid bodies.
EST100. 5	PO 2	3	Students will be able to solve problems by applying theproperties of distributed areas and masses.

EST 130	BASICS OF ELECTRICAL	L	Т	Р	CREDIT	Year of Introduction
	ENGINEEKING	4	0	0	4	2019

Course Outcomes: After completion of the course the student will be able to:

CO1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits
CO2	Develop and solve models of magnetic circuit
CO3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady state

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6		PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	1											2	2	2	1
CO2	3	1											2	2		1
CO3	3	1											2	2	2	1

JUSTIFICATION

	PO1	Able to know the fundamental concepts and circuit laws in simple DC circuit							
	PO2	Able to analyse DC circuits							
	PO12	Ability to solve simple problems associated with DC circuits							
CO1	PSO1	Students will be apply the knowledge of mathematics and science to solve							
		various fundamental problems in DC circuits.							
	PSO2	Students will be able to develop solution using DC circuits for further							
		development of society							
	PSO3	Students will be able to recognize the need for lifelong learning in the							
		broadest context of technological change in the area of DC circuits							
	PO1	Able to know fundamentals of magnetism and solve problems in magnetic							
		circuits							
	PO2	Able to analyse magnetic circuits							

CYCLE 1 - NAAC ACCREDITATION 2023
	PO12	Ability to solve simple problems associated with Magnetic circuits						
~~~	PSO1	Students will be able to apply knowledge of magnetic circuits to solve						
CO2		engineering problems						
	PSO3	Students will be able to recognize the need for lifelong learning in the field of						
		magnetism and magnetic circuits						
	<b>PO1</b>	Able to apply the fundamental laws of electrical engineering to solve simple						
		ac circuits problems						
	PO2	Able to analyse AC circuits						
	PO12	Ability to solve simple problems associated with AC circuits						
CO3	PSO1	Students will be apply the knowledge of mathematics and science to solve						
		various fundamental problems in AC circuits.						
	PSO2	Students will be able to develop solution using AC circuits for further						
		development of society						
	PSO3	Students will be able to recognize the need for lifelong learning in the						
		broadest context of technological change in the area of AC circuits						

EST 130	BASICS OF ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction
	ENGINEERING	4	0	0	4	2019

After the successful completion of this course, students will able to

No.	Course outcomes	Knowledge Level
CO 4	Describe working of a voltage amplifier	K2
CO 5	Outline the principle of an electronic instrumentation system	K2
CO 6	Explain the principle of radio and cellular communication	K2

## <u>CO – PO Matrix</u>

	Р	P	Р	P	P	Р	Р	Р	Р	P	Р	Р	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 6	2	-	-	-	-	-	-	-	-	-	-	2	-	-
EST 130														

#### JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	Mapping Level	Justifications
	(3/2/1)	
CO4 – PO1	2	Knowledge in the working of a voltage amplifier will improve engineering skills.
CO5 – PO1	2	The principle of an electronic instrumentation system Will help to finding solutions for complex engineering problems.
CO6 – PO1	2	Knowledge in the principle of radio and cellular communication will improve engineering skills.
CO5 – PO12	2	The principle of an electronic instrumentation system can motivate the students to improve their knowledge to adapt technological changes.
		Knowledge in the principle of radio and cellular communication will motivate the students to improve their knowledge to adapt technological
CO6 – PO12	2	changes.

PHT 100	ENGINEERING PHYSICS A	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

After the successful completion of this course, students will able to

No.	Course outcomes	Knowledge
00.1		Level
CO 1	Compute the quantitative aspects of waves and oscillations in	K3
	engineering systems.	
CO 2	Apply the interaction of light with matter through interference,	
	diffraction and identify these phenomena in different natural optical	K3
	processes and optical	
	instruments.	
CO 3	Analyze the behaviour of matter in the atomic and subatomic level	
	through the principles of quantum mechanics to perceive the microscopic	K2
	processes in	
	electronic devices.	
<b>CO 4</b>	Classify the properties of magnetic materials and apply vector calculus to	V2
	static	KJ
	magnetic fields and use Maxwell's equations to diverse engineering	
	problems	
CO 5	Analyze the principles behind various superconducting applications,	17.0
	explain the	K2
	working of solid state lighting devices and fibre optic communication	
	system	

#### CO PO MAPPING

СО	PO 1	PO 2	PO 3	<b>PO</b> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	2	-	-	-	-	-	1	2	-	-	1	1	-	-
CO 2	3	2	-	-	-	-	I	1	2	-	I	1	-	-	I
CO 3	3	2	-	-	-	-	-	1	2	-	-	1	1	-	-
<b>CO 4</b>	3	1	-	-	-	-	-	1	2	-	-	1	1	-	-
CO 5	3	1	-	-	-	-	-	1	2	-	-	1	1	-	-
Averag	3	1.6	-	-	-	-	-	1	2	-	-	1	1	-	-

Mapping	LEVE	Justificati
	L	on
CO1-PO1	3	Compute the qualitative aspects of waves and oscillations in engineering systems like natural frequency, damped frequency, forced frequency, resonant frequency, Q-factor, frequency etc.
CO1-PO2	2	To identify the physics behind the flow of current and relevant innovations in the respective branches.
CO1-PO8	1	Apply the principles of professional ethics by understanding thenorms of engineering practice.
CO1-PO9	2	To practice team work by combining individual responsibilities invarious class room activities.
CO1-PO12	1	To understand the use of new technologies and relevant innovations in the respective branches.
CO1-PSO1	1	The qualitative aspects of waves and oscillations to analyse and applying fundamental concepts.
CO2-PO1	3	Apply the interaction of light with matter through interference and diffraction and to identify these phenomena in different natural optical processes and optical instruments. E.g.: Measurement of refractive index of materials, path difference and phase difference between waves, dispersive power and resolving power of plane transmission grating.
CO2-PO2	2	Use the first principles of interaction of light with matter and applythis to different optical processes and optical devices.

	1	Apply the principles of professional ethics to various
CO2-PO8		fields of engineering practice.
CO2-PO9	2	To practice team work by combining
		individual responsibilities in various class room
		activities.
CO2-PO12	1	To understand the use of new technologies and relevant
		innovations in the respective branches.
		Analyze the behaviour of matter in the atomic and
CO3 -PO1	3	subatomic level through the principles of quantum
		mechanics to perceive the microscopic processes in
		electronic devices. E.g.: Wave-function
		and it's physical significance, Schrödinger equations
		tunnelling Quantum confinement properties of
		nanomaterials.
CO3-PO2	2	Use the principles of behaviour of matter in the atomic
		and subatomic level and analyse the various
		microscopic processes in scientific devices and Nano
CO2 DO0	1	structures.
CO3-PO8	1	fields of engineering practice
CO3-PO9	2	To practice team work by combining individual
	2	responsibilities invarious class room activities.
CO3-PO12	1	To understand the use of new technologies and relevant
		innovations in the respective branches.
CO3-PSO1	1	Analyse the behaviour of matter in the atomic and subatomic
		levelthrough the principles of quantum mechanics to
		identify
		fundamental concepts.
CO4-PO1	3	Classify the properties of magnetic materials and apply
		vector calculus to static magnetic fields and use Maxwell's
		equations to diverse engineering problems. E.g.: Faraday's
		gradiant divergence and curl and its applications
		displacement current and propagation of
		electromagnetic waves.
CO4-PO2	1	To identify the physics behind the properties of magnetic
		materials
		and apply vector calculus in analysing problems related
	1	toengineering practice.
CO4-PO8	1	understanding theorems of engineering practice
CO4-PO9	2	To practice team work by combining individual
		responsibilities invarious class room activities.
CO4-PO12	1	To understand the use of new technologies and
		relevantinnovations in the respective branches.
CO4-PSO1	1	Classify the properties of magnetic materials and apply
		vector
		calculus to identify fundamental concepts.

CO5-PO1	3	Analyse the principles behind various superconducting
		applications, explain the working of solid-state lighting
		devices and fibre optic communication system. E.g.:
		Meissner effect, classification of superconducting
		materials, Qualitative idea of BCS theory. Working of
		various photonic devices like LED, various Photo
		detectors. Solar cell. Classification of Optical fibre cable
		based on refractive index, significance of Numerical
		aperfure
		fibre optic communication system and fibre optic sensors.
CO5-PO2	1	To identify the physics behind the Superconducting
		phenomenon and fibre optics and relevant innovations in the
		respective branches.
CO5-PO8	1	Apply the principles of professional ethics by
		understanding the
		norms of engineering practice.
CO5-PO9	2	To practice team work by combining individual
		responsibilities invarious class room activities.
CO5-PO12	1	To understand the use of new technologies and relevant
		innovations
		in the respective branches.
CO5-PSO1	1	Analyse the principles behind various
		superconducting
		phenomena.

PHL 120	ENGINEERING PHYSICS LAB	L	Т	Р	CREDIT	Year of Introduction
		0	0	2	1	2019

After the successful completion of this course, students will able to

No.	Course outcomes	Knowledge Level		
CO 1	Develop analytical/experimental skills and impart prerequisite	K3		
	hands on experience for engineering laboratories	KJ		
CO 2	Understand the need for precise measurement practices for datarecording	K3		
CO 3	Understand the principle, concept, working and			
	applications of relevant technologies and comparison of	<b>K</b> 3		
	results with theoretical			
	calculations			
CO 4	Analyze the techniques and skills associated with modern scientifictools such as lasers and fiber optics	К3		
CO 5	Develop basic communication skills through working in groups inperforming the laboratory experiments and by interpreting the results	K2		

со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	-	-	-	3	-	-	1	2	-	-	1	1	-	-
CO 2	3	-	-	-	3	-	I	1	2	-	-	1	1	I	-
CO 3	3	-	-	-	3	-	I	1	2	-	-	1	-	I	-
CO 4	3	-	-	-	3	-	I	1	2	-	-	1	1	1	-
CO 5	3	-	-	-	3	-	-	1	2	-	-	1	1	1	-
Averag	3	-	-	-	3	-	-	1	2	-	-	1	1	1	-
e															

# Mapping of course outcomes with program outcomes

Mapping	LEVEL	Justificati
		on
CO1-PO1	3	Designing of instruments, structures and analysis using tools requires fundamentals of oscillations, resonance and waves.
CO1-PO5	3	Applying the theoretical knowledge of resonance and waves to design an conduct experiments for data interpretation.
CO1-PO8	1	Apply the principles of professional ethics by understanding thenorms of engineering practice.
CO1-PO9	2	To practice team work by combining individual responsibilities in various class room activities.
CO1-PO12	1	To understand the use of new technologies and relevant innovations in the respective branches.
CO1-PSO1	1	To develop experimental skills for analysing the fundamental concepts.
CO2-PO1	3	Designing of instruments, structures and analysis tools require fundamentals of interference and diffractionengineering problems.

CO2-PO5	3	Applying the theoretical knowledge of interference and diffraction to design and conduct experiments for data
02-105		interpretation.
	1	Apply the principles of professional ethics to various
CO2-PO8		fields of engineering practice.
CO2-PO9	2	To practice team work by combining
		individual responsibilities in various class room
CO2 DO12	1	activities.
CO2-PO12	1	I o understand the use of new technologies and relevant
CO2-PSO1	1	To Understand the need for precise measurement
02-1501	1	practices fordata recording in various engineering
		problems.
		Analyse the behaviour of matter in the atomic and
CO3 -PO1	3	subatomic level through the principles of quantum
		mechanics to perceive the microscopic processes in
		electronic devices. E.g.: Wave-function and it's physical
		significance, Schrödinger equations and application to
		Quantum confinement properties of papomaterials
CO3-PO5	3	Use the principles of behaviour of matter in the atomic
	C	and subatomic level and analyse the various microscopic
		processes in
		scientific devices and Nano structures.
CO3-PO8	1	Apply the principles of professional ethics to various
		fields of
CO3-PO9	2	To practice team work by combining individual
000-107	2	responsibilities in
		various class room activities.
CO3-PO12	1	To understand the use of new technologies and
		relevant
	2	innovations in the respective branches.
CO4-PO1	3	magnetism forsolving various engineering problems.
CO4-PO5	3	To practice effective communication by various
		presentations in
		class and laboratory sessions.
CO4-PO8	1	Apply the principles of professional ethics to various
		engineering practice
CO4-PO9	2	To practice team work by combining individual
		responsibilities in
		various class room activities.
CO4-PO12	1	To understand the use of new technologies and
		relevant
		innovations in the respective branches.

CO4-PSO1	1	Analyze the techniques and skills associated with modern
		scientifictools such as fasers and fiber optics.
CO4-PSO2	1	To understand the principle, concept, working and
		applications in
		theoretical calculations.
CO5-PO1	3	Application of photonics and fiber optics in various
000101		branches of engineering.
CO5-PO5	3	Applying the theoretical knowledge of laser, photonics
	_	and fiber
		optics for data interpretation
CO5 D08	1	Apply the principles of professional ethics to various
005-106	1	Signature principles of professional edites to various
		fields of
		engineering practice.
CO5-PO9	2	To practice team work by combining individual
		responsibilities in
		various class room activities.
CO5-PO12	1	To understand the use of new technologies and
		relevant
		innovations in the respective branches
CO5 0501	1	Davalon basic communication skills through working in
005-1501	1	Develop basic communication skins unough working in
		groups in
		performing the laboratory experiments in finding the
		results.
CO5-PSO2	1	To understand the principle, concept, working and
		applications of relevant technologies and comparison of
		results with theoretical
		calculations by applying fundamental concepts
		alouations by apprying rundamental concepts.

HUN 102	PROFESSIONAL COMMUNICATI	L	Т	Р	CREDIT	Year of Introduction
	UN	2	0	2	-	2019

After the successful completion of this course, students will able to

CO 1	Develop vocabulary and language skills relevant to engineering as a profession(k3)
CO 2	Analyze, interpret and effectively summarize a variety of textual content(k3)
CO 3	Create effective technical presentations(k2)
CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at generalizations/consensus(k5)
CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs(k3)
CO 6	Create professional and technical documents that are clear and adhering to all the necessary conventions(k6)

### Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	2	-	-	2	2	1	3			1
CO2	1	1	-	-	-	-	-	-	3	-	-	3			1
CO3	_	-	-	-	-	1	-	-	1	3	1	-			1
CO4	1	2	-	-	-	-	-	-	-	2	1	1			1

CO5	-	3	2	1	-	-	-	-	-	1	-	1			1
CO6	-	-	-	-	-	1	-	-	2	3	-	1	1	1	

СО	PO	MAPPI NG	JUSTIFICATION							
	PO6	2	Graduate should be able to understand the textual content given to assess societal, health and legal issues							
	PO9	2	Graduate need to effectively communicate as a member or leader of a team to constructively work towards providing solution for engineering problems							
CO1	PO1 0	2	Graduate need to effectively communicate using language effectively tocomprehend and write effective report							
	PO1 1	1	Graduate needs to communicate effectively knowledge and understanding of engineering principles in order to manage projects							
	PO1 2	3	Graduate need to develop vocabulary and language skills relevant toengineering as a professional to engage in life long learning							
	<b>PS0</b> 3	1	Graduate need to develop vocabulary and language skills relevant toengineering as a professional to engage in life long learning							
	PO1	1	Graduate will be able to apply different reading styles to analyze , interpret & effectively summarize a variety of textual content							
	PO2	1	Graduate need to develop reading skills in order to develop sustained conclusions to complex engineering problems							
<b>CO</b> 2	PO9	3	Graduate need to effectively summarize ,analyses and interpret the textual content in order to function effectively in a team							
02	PO1 1		Graduate should able to utilize various reading skills to demonstrate knowledge and understanding of engineering principles							
	PO1 2	3	Graduate need to analyze , interpret & effectively summarize a variety of textual content to effectively engage in life long learning							
	<b>PS0</b> 3	1	Graduate need to analyze , interpret & effectively summarize a variety of textual content to effectively engage in life long learning							

	PO6	1	Graduate should be able to create technical presentation based on contextualknowledge to convey societal, health and legal issues
CO3	PO9	1	Graduate need to effectively create technical presentation to convey ideas and solutions in a team
	PO1 0	3	Graduate need to effectively create technical presentation to convey ideas
	PO1 1	1	Graduate need to effectively create technical presentation to demonstrate their acquired knowledge through effective presentation
	PS0 3	1	graduates need to create effective presentations to pursue life long learning

	PO1	1	Graduate need to effectively conduct healthy group discussion to analyses ,understand and learn various methodologies towards efficient electrical systemdesign						
CO4	PO2	2	Graduate need to actively involve in group discussions to able to arrive atoptimal conclusion towards development of electrical system						
	PO1 0	2	Graduate need to discuss technical solution related to complex engineeringtopics in a group setting and arrive at generalization /consensus						
	PO1 1	1	Graduates need to be able to communicate in a group for effective projectmanagement						
	PO1 2	1	Graduate need to discuss technical solution related to complex engineer problems to advance in research and development						
	PS0 3	1	Graduates need to have good communication skill in a group setting to pursuelife l;ong learning						
	PO2	3	Graduate need to apply proper listening skills and analyze them to constructively contribute to sustained conclusions to complex engineeringproblems						
	PO3	2	Graduate need to implement appropriate listening skills to understand the specified needs to find solution for complex engineering problems						
CO5	PO4	1	Graduate need to apply listening skills for synthesis of information to provide valid conclusion						
	PO1 0	1	Graduates need to listen effectively to arrive at proper reports on activities being conducted						

	PO1 2	1	Graduates need to listen effectively to pursue life long learning
	PS0 3	1	Graduates need to have good listening skills to pursue life long learning
	PO6	1	Graduate need to create technical document that convey the textual knowledge associated to an engineering system
	PO9	2	Graduates need to create professional & technical document that will help theteam or indiviual work effectively
CO6	PO1 0	3	Graduates need to create professional & technical document to communicate ideas and projects effectively
	PO1 2	1	Graduates need to create professional documents to pursue life long learning
	PSO 1	1	Graduates need to be able to create effective technical reports to
	PSO 2	1	Graduates need to be able to create effective technical reports to derivesustainable solutions to complex electrical systems

EST 102	PROGRAMMIN G IN C	L	Т	Р	CREDIT	Year of Introduction
		2	1	2	4	2019

After the successful completion of this course, students will able to

C102. 1	Analyse a computational problem and develop an algorithm/flowchart to find itssolution (K3)
C102. 2	Develop readable C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators. (K3)
C102. 3	Write readable C programs with arrays, structure or union for storing the data to beProcessed. (K3)
C102. 4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem. (K3)
C102. 5	Write readable C programs which use pointers for array processing and parameterpassing. (K3)
C102. 6	Develop readable C programs with files for reading input and storing output. (K3)

# Mapping of course outcomes with program outcomes

COs/P Os	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS 0 3
C205.1	3	3	3	2	-	2	-	-	-	3	3	3	-	-	-
C205.2	3	3	3	2	2	-	-	-	-	2	-	3	-	-	-
C205.3	3	3	3	1	2	-	-	-	-	2	-	3	-	-	-
C205.4	3	3	3	1	2	-	-	-	-	2	3	3	-	_	-

C205.5	3	3	-	-	2	-	-	-	-	1	-	3	-	-	-
C205.6	3	3	-	-	2	-	-	-	-	1	-	3	-	-	-
Average	3	3	3	2	2	2	-	-	-	2	3	3	-	-	-

СО	РО	LEVE L	REMARK S
	PO 1	3	By understanding the logic of analyzing the problem and developing the algorithm, students will be able to apply the knowledge to complexengineering problems.
	PO 2	3	By understanding the logic of analyzing the problem and developing the algorithm, students will be able to identify, formulate and analyze engineering problems.
	PO 3	3	By understanding the logic of analyzing the problem and developing the algorithm students will be able to design solutions for very simple engineering problems.
CO 1	PO4	2	By understanding the logic of analyzing the problem and developing the algorithm students will be able to use research knowledge for theanalysis and interpretation of data.
	PO6	2	By understanding the logic of analyzing the problem and developing the algorithm students will be able to communicate on complex engineering activities with the engineering community.
	PO10	3	By understanding the logic of analyzing the problem and developing the algorithm students will be able to communicate effectively on complexengineering activities with the engineering community.
	PO11	3	By understanding the logic of analyzing the problem and developing the algorithm students will be able to manage projects in a team.

	PO12	3	By understanding the logic of analyzing the problem and developing the algorithm students will be able to engage in continuous learning.
	PO 1	3	By understanding how to develop a program in C language using loops, branching statements and operators, students will be able to apply theknowledge in complex engineering problems.
	PO 2	3	By understanding how to develop a program in C language using loops,branching statements and operators, students will be able to apply identify, formulate and analyze simple engineering problems.
CO 2	PO3	3	By understanding how to develop a program in C language using loops, branching statements and operators, students will be able to designsolutions for very simple engineering problems.
	PO4	2	By understanding how to develop a program in C language using loops, branching statements and operators, students will be able to use research knowledge for the analysis and interpretation of data.
	PO5	2	By understanding how to develop a program in C language using loops, branching statements and operators, students will be able to use moderntools

PO10	2	By understanding how to develop a program in C language using loops, branching statements and operators, student will be able to communicate effectively on complex engineering activities with the engineering community.
PO12	3	By understanding how to develop a program in C language using loops, branching statements and operators, students will be able to engage in continuous learning
PO 1	3	By understanding how to develop a program in C language using arrays, structure and union, student will be able to apply the knowledge to find solution of complex engineering problems.
PO 2	3	By understanding how to develop a program in C language using arrays, structure and union, student will be able to identify, analyze and make conclusions of simple engineering problems.

	PO 3	3	By understanding how to develop a program in C language using arrays, structure and union, student will be able to design solutions for simple engineering problems.
	PO 4	1	By understanding how to develop a program in C language using arrays, structure and union, student will be able to conduct investigations of complex problems and provide valid conclusions.
CO 3	PO 5	2	By understanding how to develop a program in C language using arrays, structure and union, student will be able to use modern tools for the implementation of concepts.
	PO10	2	By understanding how to develop a program in C language using arrays, structure and union, student will be able to communicate effectively about the numerical methods to the engineering community.
	PO12	3	By understanding how to develop a program in C language using arrays, structure and union, student will be able to engage in continuous learning.
CO4	PO 1	3	By understanding how to develop a program in C language using function and recursion, student will be able to apply the knowledge to find solution of complex engineering problems.

PO 2	3	By understanding how to develop a program in C language using function and recursion, student will be able to identify, analyze and make conclusions of simple engineering problems.
PO 3	3	By understanding how to develop a program in C language using function and recursion, student will be able to design solutions for simple engineering problems.
PO 4	1	By understanding how to develop a program in C language using function and recursion, student will be able to conduct investigations of complex problems and provide valid conclusions.
PO 5	2	By understanding how to develop a program in C language using function and recursion, student will be able to use modern tools for the implementation of concepts.

	PO10	2	By understanding how to develop a program in C language using function and recursion, student will be able to communicate effectively about the numerical methods to the engineering community.
	PO11	3	By understanding how to develop a program in C language using function and recursion, students will be able to manage projects in a team.
	PO12	3	By understanding how to develop a program in C language using function and recursion, student will be able to engage in continuous learning.
	PO 1	3	By understanding how to develop a program in C language using array processing and parameter passing, student will be able to apply the knowledge to find solution of complex engineering problems.
CO5	PO 2	3	By understanding how to develop a program in C language using array processing and parameter passing, student will be able to identify, analyze and make conclusions of simple engineering problems.
	PO 5	2	By understanding how to develop a program in C language using array processing and parameter passing, student will be able to use modern tools for the implementation of concepts.

PO10	1	By understanding how to develop a program in C language using array processing and parameter passing, student will be able to communicate effectively about the numerical methods to the engineering community.
PO12	3	By understanding how to develop a program in C language using array processing and parameter passing, student will be able to engage in continuous learning.
PO 1	3	By understanding how to develop a program in C language using files, student will be able to apply the knowledge to find solution of complex engineering problems.
PO 2	3	By understanding how to develop a program in C language using files, student will be able to identify, analyze and make conclusions of simple engineering problems.

CO6	PO 5	2	By understanding how to develop a program in C language using files, student will be able to use modern tools for the implementation of concepts.
	PO10	1	By understanding how to develop a program in C language files, student will be able to communicate effectively about the numerical methods to the engineering community.
	PO12	3	By understanding how to develop a program in C language using files, student will be able to engage in continuous learning.

MAT 102	VECTOR CALCULUS	L	Т	Р	CREDIT	Year of Introduction
	EQUATION AND	3	1	0	4	2019

#### Prerequisite: Calculus of single and multi- variable functions

**Course Outcomes:** After completion of the course the student will be able to:

CO1	Compute the derivatives and line integrals of vector functions and learn their applications
CO2	Evaluate surface and volume integrals and learn their inter relations and application
CO3	Solve homogeneous and non- homogeneous linear differential equation with constant coefficient
CO4	Compute Laplace transform and apply them to solve ODEs arising in engineering
CO5	Determine the Fourier transform of functions and apply them to solve problems arising in engineering

	P 0	P 0 2	Р О З	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	PO 1 0	P 0	PO 1 2	PS O 1	P S O	PS O 3
CO 1	3	3	3	3	2	1	_	_	1	2	-	2	1	2	
CO 2	3	3	3	3	2	1	-	-	1	2	-	2	1		
CO 3	3	3	3	3	2	1	-	-	1	2	-	2	1		
CO 4	3	3	3	3	2	1	-	-	1	2	-	2	1		
CO 5	3	3	3	3	2	1	-	-	1	2	-	2	1		

## Mapping of course outcomes with program outcomes (Minimum requirement)

C O	P O	LE V EL	REMA RKS
	Р О 1	3	By understanding the modern theory of vector calculus students willbe able to apply the knowledge in complex engineering problems.
	P O 2	3	By understanding the vector calculus students will be able to identify, formulate and analyze simple engineering problems.
C 0 1	P O 3	3	By understanding the differential equation students will be able todesign solutions for very simple engineering problems.

P O 4	3	By understanding the vector calculus students will be able to useresearch knowledge for the analysis and interpretation of data.
P O 5	2	By understanding the vector calculus students will be able to usemodern tools
P O 6	1	By understanding derivatives students will be able to communicateon complex engineering activities with the engineering community.

	P O 9	1	By understanding derivatives students will be able to engage incontinuous learning.
	P O 10	2	By understanding vector calculus and derivatives the student will beable to communicate effectively on complex engineering activities with the engineering community.
	P O 12	2	By understanding derivatives the student will be able to engage incontinuous learning.
	PS O 1	1	By understanding vector calculus and derivatives the student will be able to apply knowledge of mathematics ,science and engineeringto design commission and maintain various type of electrical systems and address challenges in the field
	P 0 1	3	By understanding surface and volume integrals the students will beable to apply the knowledge in complex engineering problems.
	P O 2	3	By understanding the surface and volume integrals the students willbe able to apply identify, formulate and analyze simple engineeringproblems.

C O 2	P O 3	3	By understanding the surface and volume integrals students will beable to design solutions for very simple engineering problems.
	Р О 4	3	By understanding the volume and surface integrals students will be able to use research knowledge for the analysis and interpretation of data.
	P O 5	2	By understanding the volume and surface integrals students will beable to use modern tools

	Р О 6	1	By understanding the volume and surface integrals students will beable to communicate on complex engineering activities with the engineering community and with the society.
	P O 9	1	By understanding the volume and surface integrals students will beable to engage in continuous learning.
	P O 10	2	By understanding the surface and volume integrals and learn their inter relations and application the student will be able to communicate effectively on complex engineering activities with the engineering community.
	P O 12	2	By understanding the surface and volume integrals the students willbe able to engage in continuous learning
	PS O 1	1	By understanding the surface and volume integrals the students will beable to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field

C 0 3	Р О 1	3	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto apply the knowledge to find solution of complex engineering problems.
	P O 2	3	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto identify, analyze and make conclusions of simple engineering problems.
	PO 3	3	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto design solutions for simple engineering problems.

PO 4	3	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto conduct investigations of complex problems and provide valid conclusions.
PO 5	2	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto use modern tools like R for the implementation of concepts.
PO 6	1	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto communicate effectively on complex engineering activities with the engineering community.

PO9	1	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto engage in continuous learning.
PO10	2	By understanding homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto communicate effectively about the numerical methods to the engineering community.
PO12	2	By understanding the homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ableto engage in continuous learning.
PS O 1	1	By understanding the homogeneous and non- homogeneous linear differential equation with constant coefficient the student will be ablefor applying knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field

	PO 1	3	By understanding the Laplace transform the student will be ableto apply the knowledge on complex engineering problems.
	PO 2	3	By understanding the Laplace transform the student will be ableto identify formulate and analyze simple engineering problems.
C O4	PO 3	3	By understanding the Laplace transform the student will be ableto design solutions for simple engineering problems.
	PO4	3	By understanding the Laplace transform the student will be able to use research knowledge for the analysis and interpretation of data.

PO 5	2	By understanding the Laplace transform, the student will be able to use modern tools like Matlab, Mathematica, Maple etc.for the implementation of concepts.
PO 6	1	By understanding the Laplace transform the student will be ableto communicate effectively about the numerical methods to the engineering community.
PO 9	1	By understanding the Laplace transform the student will be ableto engage in continuous learning.
PO10	2	By understanding the Laplace transform the students will beable to communicate effectively on complex engineering activities with the engineering community.
PO12	2	By understanding the Laplace transform the students will be able to the student will be able to engage in continuous learning.

	PS O1	1	By understanding the Laplace transform the student will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various typeof electrical systems and address challenges in the field
	PO 1	3	By understanding the Fourier transform and functions the students will be able to apply the knowledge on complex engineering problems
C 05	PO 2	3	By understanding the Fourier transform and functions thestudents will be able to the student will be able to identify formulate and analyze simple engineering problems.

PO 3	3	By understanding the Fourier transform and functions thestudents will be able to the student will be able to design solutions for simple engineering problems.
PO 4	3	By understanding the Fourier transform and functions the students will be able to the student will be able to use researchknowledge for the analysis and interpretation of data.
PO 5	2	By understanding the Fourier transform and functions the students will be able to the student will be able to use moderntools for the implementation of concepts.
PO 6	1	By understanding the Fourier transform and functions the students will be able to the student will be able to communicate effectively on complex engineering activities with the engineering community.
PO 9	1	By understanding the Fourier transform and functions the students will be able to the student will be able to engage incontinuous learning.
PO10	2	By understanding the Fourier transform and functions the students will be able to communicate effectively on complexengineering activities with the engineering community.

PO12	2	By understanding the Fourier transform and functions thestudent will be able to engage in continuous learning.
PS O1	1	By understanding the Fourier transform and functions the students will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and addresschallenges in the field

ESL 130	BASIC ELECTRICAL WORKSHOP	L	Т	Р	CREDIT	Year of Introduction
	WORKSHOF	0	0	2	1	2019

**Course Outcomes:** After completion of the course the student will be able to:

CO1	Demonstrate safety measures against electric shocks
CO2	Identify the tools used for electrical wiring, electrical accessories, wires, cables, batteries and standard symbols
CO3	Develop the connection diagram, identify the suitable accessories and materials necessary for wiring simple lighting circuits for domestic buildings
CO7	Work in a team with good interpersonal skills

### MAPPING

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	3	-	-	-	-	-	1	-	1	-
CO2	2	-	-	-	-	-	-	-	-	1	-	-	2	-	-
CO3	2	-	-	1	-	1	-	1	2	2	-	2	3	-	-
<b>CO7</b>	-	-	-	-	-	-	-	-	3	2	-	2	1	1	3
AVG	2	-	-	1	-	2	-	1	2.5	1.67	-	1.67	2	1	3

СО	PO	MAPPING	JUSTIFICATION						
	PO6	3	Completely compatible with CO, because students are using contextual knowledge to safeguard one's life.						
CO1	PO12	1	It leads to lifelong learning for students						
	PSO1	1	Knowledge of safety measures against electrical shocks will help in following work ethics at the work place						
	PO1	2	Applying practical knowledge in engineering, so that complex engineering problems can be solved.						
CO2	PO10	1	Communicate effectively on complex engineering activities						
	PSO1	2	Knowledge of tools, electrical accessories, wires, cables, batteries is required to design and maintain electrical systems						
	PO1	2	Applying practical knowledge in engineering, so that complex engineering problems can be solved.						
P P CO3 P	PO4	1	Helps students to conduct investigations of complex problems by practicing it by themselves.						
	PO6	1	Students are getting responsibilities relevant to the professional engineering practice						
	PO8	1	Appling ethical principles						
	PO9	2	Functioning effectively as an individual, and as a member, leader in diverse teams etc.						
	PO10	2	Communicate effectively on complex engineering activities						
	PO12	2	It leads to lifelong learning for students						
	PSO1	3	Developing connection diagrams for circuits is imperative for designing and maintaining various electrical systems						
	PO9	3	Functioning effectively as an individual, and as a member, leader in diverse teams etc.						
	PO10	2	Communicate effectively on complex engineering activities						
	PO12	2	It leads to lifelong learning for students						
CO7	PSO1	1	Working in a team and applying engineering knowledge will help in designing, commissioning and maintaining an engineering system						
	PSO2	1	Working in a team will help in deriving faster solution to complex engineering problems						

	PSO3	3	While working in a team, one learns from other team members and this is imperative for life-long learning and developing interpersonal skills
--	------	---	-----------------------------------------------------------------------------------------------------------------------------------------------------

ESL 130	BASIC ELECTRONICS WORKSHOP	L	Т	Р	CREDIT	Year of Introduction
	WORKSHOP	0	0	2	1	2019

**Course Outcomes:** After completion of the course the student will be able to:

CO4	Identify and test various electronic components
CO5	Draw circuit schematics with EDA tools
CO6	Assemble and test electronic circuits on boards

## MAPPING

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3				1				2			2			
CO2	3				2			2	2			2			
CO3	3				2				2			1			
AVG															

Mapping	Mapping Level (3/2/1)	Justifications							
CO4 DO1	2	Students are expected to utilize engineering knowledge for the							
C04 - P01	5	identification and testing of various electronic components							
CO4 BO5	1	Students are expected to identify certain problems by understanding							
04-105	1	the testing of various electronic components							
		Students are expected to function effectively as an individual and in							
CO4 - PO9	2	a team during the identification and testing of various electronic							
		components							
		Identification and testing of various electronic components will help							
CO4 –	2	the							
PO12	2	students to develop the ability to engage in independent and life-							
		long learning, in the broadest context of technological change.							
CO5 - PO1	3	Students are expected to apply the electronic circuit knowledge to							
005-101	5	draw the circuit schematic							
CO5 - PO5	2	Students are expected to utilize the appropriate EDA softwares							
005-105	2	effectively to draw the circuit schematic.							
CO5 - PO8	2	Students are expected to apply the ethical rules and commit to							
005-100	2	professional ethics in the laboratory.							
CO5 - PO9	2	Students are expected to function effectively as an individual to							
	2	obtain the expected outcome							
CO5 - PO12	2	Use of the software tools enable the students to engage in							
	2	independent and lifelong learning							
		Students are expected to apply knowledge of Electronic circuits to							
CO6 - PO1	3	rectify problems while assembling and testing electronic circuits on							
		board.							
		Students are expected to create, select, and apply appropriate							
CO6 - PO5	2	techniques and resources, to assemble and test electronic circuits on							
		board.							
CO6 – PO9		Students are expected to design documentation of the various							
	2	electronic circuit experiments, effectively as an individual and in a							
		team.							
		Students are expected to recognize the need for, and have the							
CO6 - PO12	1	preparation and ability to engage in independent and life-long							
		learning in the area of electronic circuits.							

EET 201	CIRCUITS AND NETWORKS	L	Т	P CREDI		Year of Introduction		
		2	2	0	4	2019		

**Course Outcomes:** After completion of the course the student will be able to:

CO1	Apply circuit theorems to simplify and solve complex DC and AC electric networks
CO2	Analyse dynamic DC and AC circuits and develop the complete response to excitations.
CO3	Solve dynamic circuits by applying transformation to s-domain.
CO4	Analyse three-phase networks in Y and $\Delta$ configurations.
CO5	Solve series /parallel resonant circuits
CO6	Develop the representation of two-port networks using network parameters and analyse.

#### MAPPING

	PO.1	PO.2	PO .3	PO .4	PO .5	PO .6	PO .7	PO .8	PO .9	PO .10	PO .11	PO .12	PSO .1	PSO .2	PSO .3
CO1	3	3										3	3	2	2
CO2	3	3										3	3	2	2
CO3	3	3										3	3	2	2
CO4	3	3										3	3	2	2
CO5	3	3										3	3	2	2
CO6	3	3										3	3	2	2

CO1	An in-depth knowledge of mathematics and electrical engineering (PO1)
	Able to analyse problems of complex DC and AC electric networks by applying various theorems (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of steady state analysis of electric circuits for various applications.
CO2	An in-depth knowledge of mathematics and electrical engineering (PO1)
	Problem formulation and transient & steady state analysis of ac and dc circuits (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of transient analysis of electric circuits for various applications.
CO3	An in-depth knowledge of mathematics especially the Laplace Transform and Inverse Laplace Transform (PO1)
-----	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
	Problem formulation and transient & steady state analysis of ac and dc circuits using Laplace Transformation (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of transient analysis in S-domain for electric circuits used in various applications.
CO4	An in-depth knowledge of mathematics and electrical engineering (PO1) Able to analyse three phase circuits in Y and $\Delta$ configurations (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) for the analysis of three phase circuits in power system
CO5	An in-depth knowledge of mathematics and electrical engineering (PO1) Able to analyse Series and Parallel resonant circuits (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) for the analysis of resonant circuits used in various applications
CO6	`An in-depth knowledge of mathematics and electrical engineering (PO1)
	Able to analyse any two port networks in terms of various network parameters (PO2).
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) for the analysis of two port network used in various applications

EEL 201	CIRCUITS AND MEASUREMENT	L	Т	Р	CREDIT	Year of Introduction		
	-5 LAD	0	0	3	2	2019		

**Course Outcomes:** After completion of the course the student will be able to:

CO1	
	Analyse voltage current relations of RLC circuits
CO2	Verify DC network theorems by setting up various electric circuits
CO3	Measure power in a single and three phase circuits by various methods
CO4	Calibrate various meters used in electrical systems
CO5	Determine magnetic characteristics of different electrical devices
CO6	Analyse the characteristics of various types of transducer systems
<b>CO</b> 7	Determine electrical parameters using various bridges
CO8	Analyse the performance of various electronic devices for an instrumentation systems and, to develop the team management and documentation capabilities.

### MAPPING

COs/P Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O 1	PS O 2	PS O 3
CO1	3	3	2						2			3	2	1	-
CO2	3	3							2			3	2	1	-
CO3	3	3							2			3	2	1	-
CO4	3	3	2						2			3	2	1	-
CO5	3	3							2			3	2	1	-
CO6	3	3	2						2			3	2	1	-
CO7	3	3							2			3	2	1	-
CO8	3	3	3	3	2				3	3	3	3	3	3	2

#### JUSTIFICATION

Apply the knowledge of mathematics and electrical engineering fundamentals<br/>(PO1)<br/>Analyse series and parallel RLC circuits using basic principles of mathematics and<br/>electrical engineering (PO2)CO1Design and develop RLC circuits for various applications to meet the specific<br/>needs(PO3)Able to work as a team for designing various electric circuits (PO9)<br/>Able to engage in lifelong learning for the analysis of electric circuits (PO12)<br/>Apply knowledge(PSO1) and derive solutions (PSO2) of various electric circuits<br/>for various applications.

	Apply the knowledge of mathematics and electrical engineering fundamentals (PO1)
CO2	Apply the basic principles of mathematics and engineering sciences for the analysis of a given circuit (PO2)
	Able to work as a team for investigating the response of dc circuits using network theorems (PO9)
	Able to engage in lifelong learning for the analysis of dc electric circuits (PO12)
	Apply knowledge(PSO1) and derive solutions (PSO2) of various dc circuits for various applications.
	Identify the engineering knowledge for single phase and three phase power measurements (PO1)
	Apply the basic principles of mathematics and electrical engineering for the analysis single phase and three phase circuits (PO2)
CO3	Able to work as a team for investigating the response of single phase and three phase circuits (PO9)
	Able to engage in lifelong learning for the analysis of single phase and three phase circuits (PO12)
	Apply knowledge(PSO1) and derive solutions (PSO2) of various single phase and three phase circuits used for various applications.

	Apply the knowledge of mathematics and electrical engineering fundamentals(PO1)
	Apply the basic principles of mathematics and electrical engineering for thecalibration of various meters and developing solutions (PO2, PO3)
CO4	Able to work as a team for investigating the error of dc and ac meters used in various applications(PO9)
	Able to engage in lifelong learning for the calibration of ac and dc meters used in various applications (PO12)
	Apply engineering knowledge(PSO1) to find errors in ac and dc meters used for various applications and derive solutions to rectify it(PSO2).
CO5	Apply the knowledge of mathematics and electrical engineering to determine the magnetization characteristics (PO1)
	Apply the basic principles of mathematics and electrical engineering for the determination of magnetization curve of a magnetic specimen used in various applications. (PO2)
	Able to work as a team for investigating the characteristics of a magnetic specimen used in various applications (PO9)
	Able to engage in lifelong learning for determining the magnetic characteristics of a magnetic specimen used in various applications (PO12) Apply engineering knowledge(PSO1) to determine the magnetization characteristics and derive solutions to improve it(PSO2).

CO6	<ul> <li>Apply the knowledge of electrical and electronics engineering fundamentals (PO1)</li> <li>Apply the basic principles of electrical and electronics engineering for analysingthe characteristics of various transducers used in different applications (PO2, PO3)</li> <li>Able to work as a team for investigating characteristics of various transducers used in different applications (PO9)</li> <li>Able to engage in lifelong learning for identifying and selecting various transducers for different applications (PO12)</li> <li>Apply engineering knowledge(PSO1) to determine suitable transducer for a particular application and derive solutions for engineering problems (PSO2).</li> <li>Apply the knowledge of electrical and instrumentation engineering fundamentals (PO1)</li> <li>Apply the basic principles of electrical and instrumentation engineering for determining the unknown electric parameters by using various bridges (PO2)</li> <li>Able to engage in lifelong learning for determining the unknown electrical parameters of various bridges (PO9)</li> <li>Able to engage in lifelong learning for determining the unknown electrical parameters of various bridges (PO9)</li> <li>Able to engage in lifelong learning for determining the unknown electrical parameters of various meters by using various bridges (PO12)</li> <li>Apply electrical and instrumentation engineering problems (PSO1) to determine the unknown electrical parameters of various meters and derive solutions for engineering problems (PSO2).</li> </ul>
CO8	Able to have knowledge about electrical and electronics engineering for developing circuits for instrumentation applications(PO1) Able to design and develop electrical and electronic circuits used for various instrumentation applications (PO2, PO3) Able to design experiments and analyse various electrical and electronic circuits (PO4) Able to simulate and analyse various electrical and electronic circuits using any simulation tool (PO5) Able to work as a team to electrical and electronic circuits used for various instrumentation applications (PO9) Able to communicate effectively about electrical and electronic circuits applications by doing course projects and thereby able to comprehend and summarize the evaluation. (PO10) Able to demonstrate knowledge and understanding of the by doing course project and thereby develop the team management and documentation capabilities. Able to engage in lifelong learning of designing different electrical and electronic circuits for various applications(PO12) Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong

learning (PSO3) of electrical and electronic circuits used for various instrumentation application

MAT	PARTIAL DIFFERENTIAL	L	Т	Р	CREDIT	Year of Introduction		
201	AND COMPLEX ANALYSIS	3	1	0	4	2019		

Prerequisite: Nil

**Course Outcomes:** After completion of the course the student will be able to:

CO 1	Understand the concept and the solution of partial differential equation
CO 2	Analyse and solve one dimensional wave equation and heat equation.
CO 3	Understand complex functions, its continuity differentiability with the use of Cauchy Riemann equations.
CO 4	Evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula, understand the series expansion of analytic function.
CO 5	Understand the series expansion of complex function about a singularity and Apply residue theorem to compute several kinds of real integrals.

Mapping of course outcomes with	orogram outcomes (Minimum)	requirement)

	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	2	1	-	-	-	2	-	2	2		
CO 2	3	3	3	3	2	1	-	-	-	2	-	2	2		
CO 3	3	3	3	3	2	1	-	-	-	2	-	2	2		
CO 4	3	3	3	3	2	1	-	-	-	2	-	2	2		
CO 5	3	3	3	3	2	1	-	-	-	2	-	2	2		
Average	3	3	3	3	2	1	-	-	-	2	-	2	2	-	-

СО	РО	LEVEL	REMARKS
CO1			By understanding the concept and solution of partial differential equations students will be able to apply the knowledge in complex engineering problems.
	PO 2	3	By understanding the concept and solution of partial differential equations students will be able to identify, formulate and analyse simple engineering problems.
	PO 3	3	By understanding the concept and solution of partial differential equations students will be able to develop solutions for very simple engineering problems.
	PO4	3	By understanding the concept and solution of partial differential equations students will be able to use research knowledge for the analysis and interpretation of data.
	PO5	2	By understanding the concept and solution of partial differential equations students will be able to use modern tools like Matlab forthe implementation of concepts.

	PO6	1	By understanding the concept and solution of partial differential equations students will be able to solve real-life engineering problems, design and development of innovative and cost-effective products exhibiting a solid foundation in electronics and engineering fundamentals to cater needs of society.
	PO10	2	By understanding the concept and solution of partial differential equations students will be able to communicate on complex engineering activities with the engineering community.
	PO12	2	By understanding the concept and solution of partial differential equations students will be able to engage in continuous learning.
	PSO1	2	By understanding the concept and solution of partial differential equations students will be able to Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.
CO 2	PO 1	3	By understanding the concept and solution of wave and heat equations students will be able to apply the knowledge in complexengineering problems.
	PO 2	3	By understanding how to solve one dimensional wave equation and heat equation, the students will be able to apply identify, formulate and analyze simple engineering problems.
	PO3	3	By understanding the modern theory of continuous probability distribution students will be able to design solutions for very simple engineering problems.
	PO4	3	By understanding how to solve one dimensional wave equation and heat equation students will be able to use research knowledge for the analysis and interpretation of data.

	PO5	2	By understanding how to solve one dimensional wave equation and heat equation students will be able to use modern tools for the implementation of concepts
	PO6	1	By understanding how to solve one dimensional wave equation and heat equation students will be able to communicate on complex engineering activities with the engineering community and with the society.
	PO10	2	By understanding the concept and solution of partial differential equations students will be able to communicate on complex engineering activities with the engineering community.
	PO12	2	By understanding how to solve one dimensional wave equation and heat equation students will be able to engage in continuous learning.
	PSO1	2	By understanding how to solve one dimensional wave equation and heat equation students will be able to Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.
	PO 1	3	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, students will be able to apply the knowledge to find solution of complex engineering problems.
CO 3	PO 2	3	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to identify, analyze and make conclusions of simple engineering problems.
	PO 3	3	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to design solutions for simple engineering problems.

	PO 4	3	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to conduct investigations of complex problems and provide valid conclusions.
	PO 5	2	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to use modern tools like R for the implementation of concepts.
	PO 6	1	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to communicate effectively on complex engineering activities with the engineering community.
	PO10	2	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to engage in continuous learning.
	PO12	2	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations students will be able to engage in continuous learning.
	PSO1	2	By understanding complex functions, its continuity, differentiability with the use of Cauchy- Reimann equations, the student will be able to Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.

CO 4	PO 1	3	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudent will be able to apply the knowledge on complex engineering problems.
	PO 2	3	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, the student will be able to identify formulate and analyze simpleengineering problems.
	PO 3	3	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudent will be able to design solutions for simple engineering problems.
	PO 4	3	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudent will be able to use research knowledge for the analysis and interpretation of data.
	PO 5	2	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, the student will be able to use modern tools like Matlab, Mathematica, Maple etc. for the implementation of concepts.
	PO 6	1	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudent will be able to communicate effectively on complexengineering activities with the engineering community.
	PO10	2	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudent will be able to engage in continuous learning.
	PO12	2	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, thestudents will be able to engage in continuous learning.

CO5	PSO1	2	By understanding how to evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula and understand series expansion of analytic functions, the student will be able to Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.
	PO 1	3	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to apply the knowledge on complex engineering problems.
	PO 2	3	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to identify formulate and analyze simple engineering problems.
	PO 3	3	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to design solutions for simple engineering problems.
	PO 4	3	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to use research knowledge for the analysis and interpretation of data.
	РО 5	2	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to use modern tools for the implementation of concepts.
	PO 6	1	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to communicate effectively on complex engineering activities with the engineering community.
	PO10	2	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to the student will be able to engage in continuous learning.
	PO12	2	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the students will be able to engage in continuous learning.
	PSO1	2	By understanding the series expansion of complex function about a singularity and apply residue theorem to compute several kinds of real integrals, the student will be able to Apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges

	in the field.

ЕЕТ	203 MEASUREMENT S AND	L	Т	Р	CREDIT	Year of Introduction
	INSTRUMENTAT ION	3	1	0	4	2019

#### **Course Outcomes**

CO1	Identify and analyse the factors affecting performance of measuring system(k1)			
CO2	Choose appropriate instruments for the measurement of voltage, current in ac and dc			
	measurements(k1)			
CO3	Explain the operating principle of power and energy measurement(k1)			
CO4	Outline the principles of operation of Magnetic measurement systems(k1)			
CO5	Describe the operating principle of DC and AC bridges, transducers based systems.(k2)			
CO6	Understand the operating principles of basic building blocks of digital systems,			
	recording and display units(k2)			

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
C01	2	1	-	-	-	-	1	1	-	-	I	-	2	2	2
CO2	3	1	I	I	I	I	I	I	-	-	-	-	2	2	2
CO3	3	1	I	I	I	-	-	-	-	-	-	-	2	2	2
CO4	3	-	-	-	-	-	-	-	-	-	1	-	2	2	2
CO5	3	-	-	-	1	-	-	-	-	-	-	2	2	2	2
CO6	3	-	-	-	2	-	-	-	-	_	-	2	2	2	2

	DO	MAPPI	
	PO	NG	JUSTIFICATION
CO		2	By studying the factors affecting the performance of measuring system
	POI	2	engineering knowledge for designing measurement system is gathering.
			By studying the factors affecting the performance of measuring system
	PO2	1	adding up problem analyzing skills
	PSO		Knowledge of of measuring system is required to design and maintain
	1	2	various systems in electrical engineering
			Knowledge of measuring system is required to find solutions to
	PS02	2	complex
			electrical engineering problems
	PSO		Knowledge of measuring system is required to equip electrical
	3	2	engineers for life long learning
			Knowledge of appropriate instruments is required to use in electrical
00	PO1	3	engineering
$\frac{co}{2}$			
			Knowledge of appropriate instruments is required to solve different
	DOY	1	types of problems in electrical engineering
		1	types of problems in electrical engineering
	P50 1	h	Knowledge of instruments and its working is required to design and
	1	Z	Infantani various systems in electrical engineering
			Knowledge of measuring system and instruments are required to find
	P502	Z	
	PSO		Knowledge of measuring system and instruments is required to equip
	3	2	electrical engineers for life long learning
	201		Knowledge of principle of measurement of power and energy is
	POI	3	required to
CO			solve different operational problems in electrical engineering
3			
_			Knowledge of principle of measurement of power and energy is
	PO2	1	required for
			problem analysis in electric systems
ſ	PSO		Knowledge of principle of measurement of power and energy is
	1	2	necessary to design and maintain various systems in electrical
			engineering
			Knowledge of principle of measurement of power and energy is
	PS02	2	required to
			find solutions to complex electrical engineering problems
	PSO		Knowledge of principle of measurement of power and energy is
	3	2	required to equip electrical engineers for life long learning

CO 4	PO1	3	Knowledge of magnetic measurements is required to solve different operational problems in electrical engineering
	PSO 1	2	Knowledge of magnetic measurements is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of magnetic measurements is required find solutions to complex electrical engineering problems
	PSO 3	2	Knowledge of magnetic measurements is required to equip electrical engineers for life long learning
CO 5	PO1	3	Knowledge of bridges and transducers is required to solve different operational problems in electrical engineering
	PO5	1	Knowledge of bridges and transducers is required for enabling modern tool usage for electrical engineers
	PO12	2	Knowledge of bridges and transducers is required to equip electrical engineers for life long learning
	PSO 1	2	Knowledge of bridges and transducers is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of bridges and transducers is required find solutions to complex electrical engineering problems
	PSO 3	2	Knowledge of bridges and transducers is required to equip electrical engineers for life long learning
CO6	PO1	3	Knowledge of recording and display units is required to solve different operational problems in electrical engineering
	PO5	2	Knowledge of recording and display units is required for enabling modern tool usage for electrical engineers
	PO12	2	Knowledge of recording and display units is required to equip electrical engineers for life long learning
	PSO 1	2	Knowledge of recording and display units is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of recording and display units is required find solutions to complex electrical engineering problems
	PSO 3	2	Knowledge of recording and display units is required to equip electrical engineers for life long learning

HUT 200	PROFESSIONAL ETHICS	L	Т	Р	CREDIT	Year of Introduction
		2	0	0	2	2019

СО	Course outcome	Knowledge level
HUT200. 1	Understand the core values that shape the ethical behaviour of aprofessional.	K2
HUT200. 2	Adopt a good character and follow an ethical life.	K3
HUT200. 3	Explain the role and responsibility in technological development bykeeping personal ethics and legal ethics.	K2
HUT200. 4	Solve moral and ethical problems through exploration and assessment by established experiments.	K2
HUT200. 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.	K3

	P 0 1	P O2	P 0 3	P O4	P 0 5	P 06	P O 7	P 0 8	P O 9	P 01 0	P 01 1	P 01 2	PS O1	PS O 2
C 01	-	-	-	-	-	-	-	2	-	-	2	-	-	-
C O2	-	-	-	-	-	-	-	2	-	-	2	-	-	-
C 03	-	-	-	-	-	-	-	3	-	-	2	-	-	-
C O4	-	-	-	-	-	-	-	3	-	-	2	-	-	-
C O5	-	-	-	-	-	-	-	3	-	-	2	-	-	-
A V G	-	-	-	-	-	-	-	2. 6	-	-	2	-	-	-

CO	LEVEL	
		JUSTIFIC
ru		ATION
- DC		
PS O		
PO8	2	By understanding the core values that shape the ethical
100		benavior of a
		professional, the student will be able to apply ethical norms
		intoengineering practices.
CO2-	2	By applying ethical principles, students will be able to
POs		shoulder
		responsibilities with professional commitment.
CO3-	3	By keeping personal ethics and legal ethics, students will be
PO8		able toput ethical principles in engineering practices.
CO4-	3	By following ethical and moral assessment, students will be
PO8		able to
		develop responsible norms in engineering practices.
CO5-	3	The student can adopt human and social values in solving
PO8	-	contemporary global issues confronting and engineer.
COl-	2	By understanding the core values that shape ethical behavior of
POIT		an individual, the student will be able to demonstrate
		engineering and management principles in teamwork in
		multidisciplinary
		environments
CO2-	2	By adopting good character based on ethical values, students
PO11		will be able to perform well as team leaders in engineering and
		managementresponsibilities.
CO3-	2	By following personal ethics and legal ethics, students will be
PO11		able to
		become successful engineer and management professionals.
CO4-	2	Through exploration and assessment by established
PO11		experiments, students will be able to excel in project
		management and finance.
CO5-	2	By applying knowledge of human values and social values.
PO11		students will be able to apply them in his / her own work either
		as a team leader or as a team member

EET 205	ANALOG ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction	
		3	1	0	4	2019	

со	Course outcome	Knowledge level
CO1	Design biasing scheme for transistor circuits.	K3
CO2	Model BJT and FET amplifier circuits.	K2
CO3	Identify a power amplifier with appropriate specifications for electronic circuit applications.	K2
<b>CO4</b>	Describe the operation of oscillator circuits using BJT.	K2
CO5	Explain the basic concepts of Operational amplifier (OPAMP)	K2
<b>CO6</b>	Design and develop various OPAMP application circuits.	K3

	PO .1	PO .2	PO .3	PO .4	PO .5	PO .6	PO .7	PO .8	PO .9	PO. 10	PO. 11	PO.12	PSO 1	PSO 2	PSO 3
CO1	2	2	2										1		
CO2	2	2	2										1		
CO3			1	2									1		
CO4	2	2	2										1		
CO5			1	2									1		
CO6	2	2	2										1		

CO1	An in-depth knowledge of electronics engineering (PO1)
	Design of different BJT biasing schemes (PO2).
	Solution of h parameter for BJT(PO3).
	Apply knowledge of mathematics, science and engineering to design biasing
	scheme for transistor circuits. (PSO1)
CO2	An in-depth knowledge of electronics engineering (PO1)
	Analysis of small signal models of BJT & FET (PO2)
	Analysis of h parameter for BJT(PO3).
	Understand model of amplifier circuits to design & commission of various types
	of electrical systems. (PSO1)
CO3	Calculate efficiency of power amplifiers(PO3).
	Review of power amplifier circuits using BJT (PO4)
	Apply knowledge of mathematics, science and engineering to design a power
	amplifier.(PSO1)
CO4	An in-depth knowledge of electronics engineering (PO1)
	Analysis of different oscillators using BJT(PO2).
	Review of different oscillators using BJT (PO3)
	Apply knowledge of mathematics, science and engineering to design of
	oscillator circuits. (PSO1)
CO5	Design of square and triangular generators (PO4).
	Analysis and design of zero crossing detectors(PO3).
	Apply knowledge of mathematics, science and engineering to understand basic
	concepts of OPAMP. (PSO1)
CO6	An in-depth knowledge of electronics engineering (PO1) Review of different
	opamps (PO2).
	Design solution of integrator and differentiators (PO3).
	Apply knowledge of mathematics, science and engineering to design & develop
	OPAMP application circuits. (PSOI)

EEL 203	ANALOG ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction
	LAD	0	0	3	2	2019

СО	Course outcome	Knowledge level
CO1	Use the various electronic instruments and for conducting experiments.	K2
CO2	Design and develop various electronic circuits using diodes and Zenerdiodes.	K2
CO3	Design and implement amplifier and oscillator circuits using BJT and JFET.	K2
CO4	Design and implement basic circuits using IC (OPAMP and 555 timers).	K2
CO5	Simulate electronic circuits using any circuit simulation software.	K2
CO6	Use PCB layout software for circuit design	K2

#### MAPPING

	PO .1	PO .2	PO .3	PO .4	PO .5	PO .6	PO .7	PO .8	PO .9	PO. 10	PO. 11	PO.12	PSO 1	PSO 2	PSO 3
CO1	2								2						
CO2	2	2	2						2						
CO3	2	2	2						2						
CO4	2	2	2						2						
CO5	1	1			3				3						
CO6	1				3				3						

#### JUSTIFICATION

CO1 Students can apply the knowledge of basic engineering to select various electronic instruments and for conducting experiments. (PO1)
 Student will be able to work as a team and function effectively in multidisciplinary environments (PO9)

CON	
02	Apply the knowledge of electronics engineering fundamentals to develop various
	electronic circuits using diodes and Zener diodes. (PO1)
	Able to analyse various wave shaping circuits ( $PO2$ )
	The to analyse various wave shaping chearts (1.02)
	Able to design and develop different wave shaping circuits using diode (PO3)
	Student will be able to work as a team and function effectively in multidisciplinary
	environments (PO9)
CO3	A sub- the law and the of the two is a sub-interiment for the second state of the
	Apply the knowledge of electronics engineering fundamentals to understand the
	operation of amplifier & oscillator circuits (PO1)
	Able to analyse amplifier & oscillator circuits (PO2)
	Able to design and develop BJT and JFET amplifier & oscillator circuits circuits
	for various applications (PO3)
	Able to work as a team for investigating the frequency response of BJT and JFET
	amplifier circuits (PO9)
	Apply knowledge(PSO1) and for developing various amplifier & oscillator circuits
	which is essential to take up life long learning in electrical engineering domain.
	(PSO3)
CO4	
	Apply the knowledge of electrical and electronics engineering fundamentals to
	understand the operation of basic circuits using OPAMP and 555 timer. (PO1)
	Able to analyse various circuits using OPAmp and 555 timer (PO2)
	Able to design and develop circuits for specific application including waveform
	generation using OPAmp and 555 timer (PO3)
	Able to work as a team for investigating the performance of various circuits using
	OPAMP & 555 IC (PO9)
	Apply knowledge(PSO1) for developing various OPAMP & 555 timer IC circuits
	which is essential to take up life long learning.(PO3)

CO5	
	Apply the knowledge of electrical and electronics engineering fundamentals to understand the operation of various electronic circuits (PO1)
	Able to analyse various electronic circuits using any simulation software (PO2)
	Able to develop and analyze electronic circuits with the use of simulation tools (PO5)
	Student will be able to work as a team and function effectively in multidisciplinary environments (PO9)
	Apply knowledge(PSO1) in electrical and electronics engineering and develop
	(PSO2) simulation model for the analysis of electronic circuits which is essential to
	take up life long learning in electrical engineering domain.(PSO3)
CO6	Apply the knowledge of electrical and electronics engineering fundamentals to Use PCB layout software for circuit design. (PO1)
	Able to develop electronic circuits with the use PCB layout software. (PO5)
	Student will be able to work as a team and function effectively in multidisciplinary environments (PO9)
	Apply knowledge (PSO1) in electrical and electronics engineering and design
	(PSO2) PCB layout for the development of electronic circuits which is essential to
	take up life long learning in electrical engineering domain.(PSO3)

MCN 201	SUSTAINABLE ENGINEERING	L	Т	Р	CREDIT	Year of Introduction
		2	0	0	-	2019

No.	Course outcomes	Knowledg eLevel
CO1	Understand the relevance and the concept of sustainability and the global initiatives in this direction	K2
CO2	Explain the different types of environmental pollution problems and their sustainable solutions	K2
CO3	Discuss the environmental regulations and standards	K2
CO4	Outline the concepts related to conventional and non-conventional energy	K2
CO5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles	К3

	Р О 1	P 0 2	P 0 3	Р О 4	P 0 5	Р О 6	P 0 7	P 0 8	P 0 9	P O 1 0	P 0 1	P 0 1 2
CO1	_	-	-	-	_	2	3	_	_	-	-	2
CO2	-	-	-	-	-	2	3	-	_	-	-	2
CO3	_	-	-	_	_	2	3	-	_	-	-	2
CO4	-	-	-	-	-	2	3	-	_	-	_	2
CO5	_	-	-	-	_	2	3	-	_	_	-	2

	LEVE L	JUSTIFICATION
CO1 -PO6	2	The knowledge about the concept and importance of sustainability will help the student to focus better on societal, health, safety and cultural aspects of his/her profession
CO1 -PO7	3	The course entirely deals with environment and sustainability, and thusall the course outcomes fully contributes to this program outcome
CO1 -PO12	2	Sustainable engineering is one of the elements of ethical engineering practices.
CO2 -PO6	2	Student's understanding of causes, effects and control of pollution contributes to making him/her a responsible engineer
CO2 -PO7	3	The course entirely deals with environment and sustainability, and thusall the course outcomes fully contributes to this program outcome
CO2 -PO12	2	Provides scope for implementation of strategies to curb environmental pollution
CO3 -PO6	2	Student's basic knowledge of environmental standards and environmental impact assessment will guide him/her in the assessment of his/her engineering practice.
CO3 -PO7	3	The course entirely deals with environment and sustainability, and thusall the course outcomes fully contributes to this program outcome

CO3 -PO12	2	Leads to more efficient energy management systems based on EIA
CO4 -PO 6	2	The understanding of basic concepts on conventional and non-conventional energy sources will enable the student to understand importance of energy efficient systems
CO4 -PO 7	3	The course entirely deals with environment and sustainability, and thus all the course outcomes fully contributes to this program outcome
CO4 -PO 12	2	Leads to more efficient utilization of resource and energy consumption
CO5 -PO 6	2	The student's understanding of sustainable development will help him be a responsible engineer working for the benefit of the society.
CO5 -PO 7	3	The course entirely deals with environment and sustainability, and thus all the course outcomes fully contributes to this program outcome
CO5 -PO 12	2	Helps the student to opt for sustainable energy resources where applicable in the project.

4							
	MA	T PROBABILIT DISTRIBUTIC RANDOM	$\frac{Y}{DNS}, L$	Т	Р	CREDIT	Year of Introduction
	204	PROCESSES A NUMERICAL METHODS	AND 3	1	0	4	2019

CO 1	Understand the concept, properties and important models of discrete random variables and using them analyze suitable random phenomenon
CO 2	Understand the concept, properties and important models of continuous random variables and using them analyze suitable random phenomena.
CO 3	Analyse random processes using autocorrelation, power spectrum and Poisson process model as appropriate
CO 4	Compute roots of equations evaluate definite integrals and perform interpolation on given numerical data using standard numerical techniques.
CO 5	Apply standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations.

	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	3	2	2	2	2	-	-	-	-	2	-	1	1		
CO 2	3	2	2	2	2	-	-	-	-	2	-	1	1		
CO 3	3	2	2	2	2	-	-	-	-	2	-	1	1		
CO 4	3	2	2	2	2	-	-	-	-	2	-	1	1		
CO 5	3	2	2	2	2	-	-	-	-	2	-	1	1		

AVER	3	2	2	2	2			2	1	1	
AGE											

СО	РО	LEVEL	REMARKS
	PO 1	3	By understanding the modern theory of discrete probability distribution students will be able to apply the knowledge in complex engineering problems.
CO 1	PO 2	2	By understanding the modern theory of discrete probability distribution students will be able to identify,formulate and analyse engineering problems.
	PO 3	2	By understanding the modern theory of discrete probability distribution students will be able to design solutions for very simple engineering problems.
	PO4	2	By understanding the modern theory of discrete probability distribution students will be able to use research knowledgefor the analysis and interpretation of data.
	PO5	2	By understanding the modern theory of discrete probability distribution students will be able to use modern tools like Rfor the implementation of concepts.
	PO10	2	By understanding the modern theory of discrete probability distribution students will be able to communicate on complex engineering activities with the engineering community.
	PO12	1	By understanding the modern theory of discrete probability distribution students will be able to engage in continuous learning.

	PSO1	1	By understanding the modern theory of discrete probability distribution students will be able to apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field
	PSO2		
	PO 1	3	By understanding the modern theory of continuous probability distribution the students will be able to apply theknowledge in complex engineering problems.
CO 2	PO 2	2	By understanding the modern theory of continuous probability distribution the students will be able to apply identify, formulate and analyze simple engineering problems.
	PO3	2	By understanding the modern theory of continuous probability distribution students will be able to design solutions for very simple engineering problems.
	PO4	2	By understanding the modern theory of continuous probability distribution students will be able to use researchknowledge for the analysis and interpretation of data.
	PO5	2	By understanding the modern theory of continuous probability distribution students will be able to use modern tools like R for the implementation of concepts
	PO10	2	By understanding the modern theory of continuous probability distribution students will be able to communicate on complex engineering activities with the engineering community and with the society.
	PO12	1	By understanding the modern theory of continuous probability distribution students will be able to engage in continuous learning.
	PSO1	1	By understanding the modern theory of continuous probability distribution students will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field
	PSO2		

	PO 1	3	By analysing random processes using autocorrelation, power spectrum and Poisson process model, the student will be able to apply the knowledge to find solution of complex engineering problems.
CO3	PO 2	2	By analysing random processes using autocorrelation, power spectrum and Poisson process model, the student will be able to identify, analyze and make conclusions of simple engineering problems.
	PO 3	2	By analysing random processes using autocorrelation, power spectrum and Poisson process model ,, the student will be able to design solutions for simple engineering problems.
	PO 4	2	By analysing random processes using autocorrelation, power spectrum and Poisson process model, the student will be able to conduct investigations of complex problems and provide valid conclusions.
	PO 5	2	By analysing random processes using autocorrelation, power spectrum and Poisson process model , the student will be able to use modern tools for the implementation of concepts.
	PO 10	2	By analysing random processes using autocorrelation, power spectrum and Poisson process model ,, the student will be able to communicate effectively on complex engineering activities with the engineering community.
	PO12	1	By analysing random processes using autocorrelation, power spectrum and Poisson process model, the student will be able to engage in continuous learning.
	PSO1	1	By analysing random processes using autocorrelation, power spectrum and Poisson process model, the student will be ableto apply knowledge of mathematics, science and engineering to design commission and maintain various typeof electrical systems and address challenges in the field
	PSO2		
	PO 1	3	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to apply the knowledge on complex engineering problems.

1			
CO 4	PO 2	2	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to identify formulate and analyze simple engineering problems.
	PO 3	2	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to design solutions for simple engineering problems.
	PO4	2	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to use research knowledge for the analysis and interpretation of data.
	PO 5	2	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to use moderntools like Matlab, Mathematica, Maple etc. for the implementation of concepts.
	PO 10	2	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to communicate effectively about the numerical methods to the engineering community.
	PO 12	1	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to engage in continuous learning.
	PSO1	1	By understanding the evaluation of definite integrals and interpolation on given numerical data using standard numerical techniques, the student will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field
	PSO2		

	PO 1	3	By understanding standard numerical techniques for solving
			systems of equations, fitting curves on given numerical dataand
			solving ordinary differential equations the students will be able to
CO 5			apply the knowledge on complex engineering problems

PO 2	2	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to identify formulate and analyze simple engineering problems.
PO 3	2	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to design solutions for simple engineering problems.
PO 4	2	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to use research knowledge forthe analysis and interpretation of data.
PO 5	2	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to use modern tools like Matlab, Mathematica, Maple etc. for the implementation of concepts.
PO 10	2	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to communicate effectively on complex engineering activities with the engineering community.

		PO 12	1	F s s t l	By understanding standard numerical techniques for solving systems of equations, fitting curves on given numerical data and solving ordinary differential equations the students will beable to the student will be able to engage in continuous learning.						
PSO 1 1 By understanding standard numerical techniques systems of equations the students will be able to a of mathematics ,science and engineering to desig and maintain various type of electrical systems an challenges in the field						nerical techniques for solvi nts will be able to apply kn ngineering to design commi lectrical systems and addres	ng owledge ission ss				
MCN	CONSTITUTION OF INDIA		ON	L	Т	Р	CREDIT	Year of Introduction			
202				2	0	0	-	2019			

СО	Course outcome	Knowledge level
MCN202. 1	Explain the background of the present constitution of India and features.	K2
MCN202. 2	Utilize the fundamental rights and duties.	К3
MCN202. 3	Understand the working of the union executive, parliament and judiciary.	K2
MCN202. 4	Understand the working of the state executive, legislature and judiciary	K2
MCN202. 5	Utilize the special provisions and statutory institutions	К3
MCN202. 6	Show national and patriotic spirit as responsible citizens of the country.	К3

#### MAPPING

	P O	P O	P O	P O	P O	P O	P O	P O	P O	PO 10	PO 11	PO 12	PS O1	PSO 2	P S
	1	2	3	4	5	6	7	8	9						0 3
CO 1	-	-	-	-	-	2	2	2	-	2	-	-	-	-	-
CO 2	-	-	-	-	-	3	3	3	-	3	-	-	-	-	-
CO 3	-	-	-	-	-	3	2	3	-	3	-	-	-	-	-
CO 4	I	-	-	-	-	3	2	3	-	3	-	-	-	-	-
CO 5	-	-	-	-	-	3	2	3	-	3	-	-	-	-	-
CO 6	-	-	_	_	_	3	3	3	_	2	-	-	_	_	-
AV G	-	-	-	-	-	2. 8 3	2. 3 3	2. 8 3	-	2.6 6	-	-	-	-	-

CO-PO- PSO	LEVEL (Low/Moderate/H igh)	JUSTIFICATION
MCN202.1- PO6	2	Understanding the background of the present constitution of India and its features, students are able to apply the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
MCN202.1- PO7	2	Understanding the background of the present constitution of India and its features, students are able to treat sustainable development is an integral part of life under article 21 of Indian Constitution.
MCN202.1- PO8	2	Understanding the background of the present constitution of India and its features, students are able to show ethical values like integrity, transparency, accountability, impartiality, public welfare and equity which are the guiding principles of Indian constitution.

MCN202.1- PO10	2	Understanding the background of the present constitution of India and its features, students are able to communicate judgements of various landmark cases and the amendments of articles in the constitution.
MCN202.2- PO6	3	Knowledge gained from the study of fundamental rights and duties, students are able to apply the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
MCN202.2- PO7	3	Knowledge gained from the study of fundamental rights and duties; students are able to practice the duty imposed on every citizen to protect environment as stated in Article 48 A.
MCN202.2- PO8	3	Knowledge gained from the study of fundamental rights and duties, students are able to issue public statements in an objective and truthful manner.
MCN202.2- PO10	3	Knowledge gained from the study of fundamental rights and duties; students are able to raise their voice effectively if the fundamental rights are denied and also communicate the fundamental duties one should perform.
MCN202.3- PO6	3	Understand the working of the union executive, parliament and judiciary, students are able to apply the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
MCN202.3- PO7	М	With the knowledge gained from the working of the union executive, parliament and judiciary, students are able to understand the key role played in achieving the development goals and targets through, for instance, setting and implementing water quality policy frameworks and standards, and regulating the discharge of pollutants into the environment and wastewater management, recycling and reuse.
MCN202.3- PO8	H	With the knowledge gained from the working of the union executive, parliament and judiciary, students are able to understand the government ethics applies to the process, behavior, and policy of governments and the public officials who serve in elected or appointed positions. It also covers issues of honesty and transparency in government, dealing with matters such as bribery, political corruption, police corruption, legislative ethics, regulatory ethics, conflict of interest, avoiding the appearance of impropriety, open government and legal

		ethics.
MCN202.3- PO10	Н	With the knowledge gained from the working of the union executive, parliament and judiciary, students are able to understand the government communication involves not only sending out persuasive messages to the public, but also explaining working policies, creating awareness of the rights of the citizens, and developing mechanisms that enable two-way communication between citizen and government.
MCN202.4- PO6	H	Understand the working of the state executive, legislature and judiciary, students are able to apply the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
MCN202.4- PO7	M	With the knowledge gained from the working of the state executive, legislature and judiciary, students are able to understand the key role played in achieving the development goals and targets through, for instance, setting and implementing water quality policy frameworks and standards, and regulating the discharge of pollutants into the environment and wastewater management, recycling and reuse.
MCN202.4- PO8	Н	With the knowledge gained from the working of the state executive, legislature and judiciary, students are able to understand the government ethicsapplies to the process, behavior, and policy of governments and the public officials who serve in
		elected or appointed positions. It also covers issues of honesty and transparency in government, dealing with matters such as bribery, political corruption, police corruption, legislative ethics, regulatory ethics, conflict of interest, avoiding the appearance of impropriety, open government and legal ethics.
MCN202.4- PO10	H	With the knowledge gained from the working of the state executive, legislature and judiciary, students are able to understand the government communication involves not only sending out persuasive messages to the public, but also explaining working policies, creating awareness of the rights of the citizens, and developing mechanisms that enable two-way communication between citizen and government.
-------------------	---	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
MCN202.5- PO6	Н	With the knowledge gained on special provisions and statutory institutions, the students are able to understand that the State shall promote with special care the educational and economic interests of the weaker sections of the society and in particular, of the Scheduled Castes and Scheduled Tribes and shall protect them from social injustice and all forms of exploitation.
MCN202.5- PO7	М	With the knowledge gained on special provisions and statutory institutions, the students are able to understand that the State shall endeavor to protect and improve the environment. Various cases include Bhopal gas leakage tragedy, Taj Mahal case.
MCN202.5- PO8	Н	With the knowledge gained on special provisions and statutory institutions, the students are able to understand that the various statutory institutions and ethical practices followed; SEBI issued a code onconflicts of interests for members on board of the regulator.
MCN202.5- PO10	Н	With the knowledge gained on special provisions and statutory institutions, the students are able to understand that in most cases the justification for creation of a statutory body to give advice to Government is to introduce expertise of a particular kind or kinds into the decision-making process.
MCN202.6- PO6	Н	After the completion of the course, the students are able to show national and patriotic spirit as responsible citizens of the country – helping the country to do better; supporting and being responsible for your family, your community and all levels of government with your willingness to work, to volunteer, to pay your share of taxes and pay.
MCN202.6- PO7	Н	After the completion of the course, the students are able to show national and patriotic spirit as responsible citizens of the country – helping the country to do better; rise of social movements that closely connect problems of environment protection with nationalist concerns - Eco-nationalism.

MCN202.6- PO8	Н	After the completion of the course, the students are able to show national and patriotic spirit as responsible citizens of the country – helping the country to do better; supporting and being responsible for your family, your community and all levels of government with your willingness to work, to volunteer, to pay your share of taxes and pay, fightagainst corruptions.
MCN202.6- PO10	М	After the completion of the course, the students are able to show national and patriotic spirit as responsible citizens of the country – helping the country to do better; fight against corruptions, raise the voice if your fundamental rights are denied, organize campaigns to create awareness among illiterate ones about their fundamental rights and duties.

EET 204	ELECTROMAGN ETIC THEORY	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

CO1	Apply vector analysis and coordinate systems to solve static electric and
	magnetic field problems(k3)
CO2	Apply Gausses Law, Coulumbs Law and Poisons Equation to determine electrostatic field parameters(k3)
CO3	Determine Magnetic fields from current distributions by applying Biot-Sarvats law and
	Ampers circuital Law(k3)
CO4	Apply Maxwells Equation for the solution of time varying fields(k3)
CO5	Analyse Electromagnetic Wave Propagation in different media(k3)

# MAPPING

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	3	-	-	-	-	-	-	-	-	-	-	2	-	1
CO2	2	3	-	-	-	-	-	-	-	-	-	-	1	-	-
соз	2	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	1	-	-
CO5	2	3	-	-	-	-	-	-	-	-	-	-	1	-	-

со	РО	MAPPI NG	JUSTIFICATION
			Knowledge of Vector analysis and coordinate systems is required to
	PO1	2	solve
			static electric and magnetic field problems in electrical engineering

			Knowledge of Vector analysis and coordinate systems is required to
	PO2	3	analyse
			static electric and magnetic field problems in electrical engineering
CO	PSO		Knowledge of Vector analysis and coordinate systems is required to
1	1	2	designand maintain various systems in electrical engineering
			Knowledge of Vector analysis and coordinate systems is required to
	PS03	1	equip
			Knowledge of fundamental laws is required to solve static electric
		2	Knowledge of fundamental laws is required to solve static electric
	FUI	L	and magnetic field problems in electrical engineering
СО	PO2	3	Knowledge of fundamental laws is required to analyse static electric and magnetic field problems in electrical engineering
2	PSO		Knowledge of fundamental laws is required to design and maintain
	1	1	varioussystems in electrical engineering
			Knowledge of fundamental laws is required to solve static electric and
	PO1	2	magnetic field problems in electrical engineering
			Knowledge of fundamental laws is required to analyse static electric
	PO2	3	and magnetic field problems in electrical engineering
CO	PSO		Knowledge of fundamental laws is required to design and maintain
3	1	1	varioussystems in electrical engineering
	PS03		
			Knowledge of fundamental Maxwells laws is required to solve static
	PO1	2	electric and magnetic field problems in electrical engineering
			Knowledge of fundamental Maxwells laws is required to analyse static
CO	PO2	3	electric and magnetic field problems in electrical engineering
4	PSO		Knowledge of fundamental MAxwells laws is required to design and
	1	1	maintainvarious systems in electrical engineering
			Knowledge of EM Wave Propagation is required to solve static electric
	PO1	2	and
CO			magnetic field problems in electrical engineering
5	<b>D</b> 00	2	Knowledge of EM Wave Propagation is required to analyse static
Č	PO2	3	electric and magnetic field problems in electrical
			engineering
	PSO		Knowledge of EM Wave Propagation is required to design and maintain
	1	1	various systems in electrical engineering

EEL 204	DIGITAL ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction
	LAB	0	0	3	2	2019

CO 1	Formulate digital functions using Boolean Algebra and verify experimentally
CO 2	Design and implement combinational logic circuits.
CO 3	Design and implement sequential logic circuits.
CO 4	Design and fabricate a digital circuit using the knowledge acquired from the laboratory

# MAPPING

	P O. 1	P O. 2	P O. 3	P O. 4	P O. 5	P O. 6	P O. 7	P O. 8	P O. 9	P O. 10	P O. 11	P O. 12	P S O 1	PS O2	P S O 3
CO 1	3	1	1	3	3			2	3	3		1	2		1
CO 2	3	3	3	3	3			2	3	3		1	2		1
CO 3	3	3	3	3	3			2	3	3		1	2		1
CO 4	3	2	1	3	2			2	3	3	2	3	2		1

	Justification of mapping
PO1	
PO2	

	PO3	
	PO4	
	PO5	
	PO8	
	PO9	To be able to Verify and Realise De Morgan's theorem
	PO10	Paolise SOP and POS by K Man
CO 1	PO12	Design and country Half A data and Fall A data
COT	PSO1	Design and verify Half Adder and Full Adder
	PSO3	Design Adder/Subtractor and BCD Adder
	PO1	
	PO2	
	PO3	
	PO4	To be able to
	PO5	Realise 2 bit comparator using gates and study of IC 7485
<b>CO 0</b>	PO8	Design and Set up BCD to Decimal decoder and 7 segment display
CO 2	PO9	Design multiplexers
	PO10	Study and Realise different Flip Flops using gates
	PO12	
	PSO1	
	PSO3	
	PO1	
	PO2	
	PO3	
	PO4	

	PO5	
	PO8	
	PO9	To be able to
	PO10	
	PO12	Realise ripple counters using
CO 3	PSO1	flip flops
	PSO3	Design and set up Synchronous
	PO1	counters
	PO2	Realise Serial IN/OUT registers using flip flops
	PO3	Study and Design shift registers and Ring and Johnson
	PO4	CounterVHDL implementation of full adder and
	PO5	
	PO8	comparator
CO 4	PO9	
	PO10	
	PO11	
	PO12	To be able to
	PSO1	Design and fabricate a digital circuit based on different
		experimentsdone
	PSO3	

EET 206	DIGITAL ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

CO1	Identify various number systems, binary codes and formulate digital functions using Boolean algebra.(K2)
CO2	Design and implement combinational logic circuits.(K3)
CO3	Design and implement sequential logic circuits.(K3)
CO4	Compare the operation of various analog to digital and digital to analog conversion circuits.(K3)
CO5	Explain the basic concepts of programmable logic devices and VHDL.(K3)

### MAPPING

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	1	-	-	-	-	-	-	-	-	-	-	2	-	1
CO2	3	3	2	-	-	-	-	-	-	-	-	-	1	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	1	-	-
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	-	-
CO5	3	2	2	-	2	-	-	-	-	-	-	-	1	-	-

### JUSTIFICATION

		MAPPI	
CO	PO	NG	JUSTIFICATION

#### CYCLE 1 - NAAC ACCREDITATION 2023

			Knowledge of various number systems, binary codes are required for digital
	PO1	3	systems
			in electronics engineering
	DOD	1	Knowledge of various number systems, binary codes are required to formulate
ao	PO2	1	digital functions using Boolean algebra
CO	PSO 1	2	Knowledge of various number systems, binary codes and formulation of
1	1	2	angination of the required to design various digital systems in electrical
			Knowledge of various number systems, binary codes and formulation of
	PS03	1	digital
	1505	1	functions is required to equip electrical engineers for lifelong learning
CO			Knowledge of logic gates is required for combinational logic circuits in
2	PO1	3	electrical engineering
			Knowledge of logic gates is required to formulate Boolean algebraic
	PO2	3	functions
			corresponds to combinational logic circuits in electrical engineering
			Knowledge of combinational logic circuit is required to design and
	PO3	2	implement Multiplexers, Demultiplexers,
			Encoders and Decoders.
	PSO		Knowledge of combinational logic circuits is required to design systems in
	1	1	electrical engineering
CO	201		Knowledge of flip flops are required for sequential logic circuits in
$\begin{array}{c} CO \\ 2 \end{array}$	PO1	3	electrical
5			engineering Warrada da a cforestantial la sia sinarita is a serie da i dantifa and da isa
	DOY	2	Knowledge of sequential logic circuits is required to identify and design
	PU2	3	electrical engineering
			Knowledge of sequential logic circuits are required to design and implement
	PO3	2	Synchronous and asynchronous counters
	105	-	Johnson counter and ring counter.
	PSO		Knowledge of sequential logic circuits is required to to design systems in
	1	1	electrical engineering
			Knowledge of various analog to digital and digital to analog conversion
	PO1	3	circuits is
			required in analog and digital systems in electrical engineering
~ ~			
CO			
4			
			Knowledge of ADC and DAC is required to design certain systems in
	PO2	4	
	PO3	1	Knowledge of ADC and DAC is required to design various electrical
┣───			systems
	<b>PSO</b>	1	Knowledge of ADC and DAC is required to design and maintain various
	1	μ	systems in electrical engineering

	PO1	3	Knowledge of the basic concepts of PLC and VHDL in various electrical systems
CO 5			
	PO2	2	Knowledge of VHDL to analyze different types of circuits
	PO3	2	Knowledge of the basic concepts of PLC and VHDL is required to design circuits in various electrical systems
	PO5	2	Knowledge of VHDL programming in xiling suite is required to design various systems in electrical engineering
	PSO 1	1	Knowledge of PLC and VHDL programming is required to design and maintain various systems in electrical engineering

EET 202	DC MACHINES AND TRANSFORMER	L	Т	Р	CREDIT	Year of Introduction
	I KAINSFORMER S	2	2	0	4	2019

СО	Course outcome	Knowledge level
EET202.1	Acquire knowledge about constructional details of DC machines	K2
EET202.2	Describe the performance characteristics of DC generators	K2
EET202.3	Describe the principle of operation of DC motors and select appropriate motor types for different applications	K2
EET202.4	Acquire knowledge in testing of DC machines to assess its performance	K2
EET202.5	Describe the constructional details and modes of operation of single phase and three phase transformers	K2
EET202.6	Analyse the performance of transformers under various conditions	K2

#### MAPPING

СО	Р О 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS 0 3
EET202. 1	3	2			2							3	1		
EET202. 2	3	2				2						3	1		
EET202. 3	3	2	2			2						3	1		
EET202. 4	3	3				2						3	1		
EET202. 5	3					2						3	2	2	
EET202. 6	3					2						3	2	2	
Average	3	1.5	0.33		0.33	1.67						3	1.33	0.67	

СО	PO/ PSO	Map ping	Justification
	PO1	3	Students will be able to apply the knowledge about constructional details of DC machines.
	PO2	2	Students will be able to analyse the performance of dc machines by using principles of mathematics, natural sciences, and engineering sciences.
EET202.1	PO5	2	Students will be able to select and apply appropriate techniques, resources, and modern engineering and IT tools for understanding the construction of DC machines.
	PO12	3	Students will be able to have lifelong learning with technological changes in improvement of DC machines.
	PSO1	1	Students will be able to apply the engineering knowledge on constructional details of DC machines.
	PO1	3	Students will be able to describe the performance characteristics of DC generators.
	PO2	2	Students will be able to analyse the DC generators using the performance characteristics.
EET202.2	PO6	2	Students will be able to apply reasoning based on performance characteristics of DC generators for the responsibilities relevant to the professional engineering practice.
	PO12	3	Students will be able to have lifelong learning with technological changes in operation of DC generators.
	PSO1	1	Students will be able to apply the engineering knowledge on performance characteristics of DC generators.
	PO1	3	Students will be able to apply the knowledge to describe the principle of operation of DC motors.
	PO2	2	Students will be able to analyse the DC motors by using principles of mathematics, natural sciences, and engineering sciences.
	PO3	2	Students will be able to select appropriate motor types for different applications.
EET202.3	PO6	2	Students will be able to apply reasoning for the selection of appropriate motor for various applications.
	PO12	3	Students will be able to have lifelong learning with technological changes in types of DC motors.
	PSO1	1	Students will be able to apply the engineering knowledge to describe the principle of operation of DC motors and selection of appropriate motors.
	PO1	3	Students will be able to describe the knowledge on testing of DC machines to assess its performance.
EET202.4	PO2	3	Students will be able to analyse the performance of DC machines by using various testing methods.
	PO6	2	Students will be able to apply various methods of testing for DC machines.
	PO12	3	Students will be able to have lifelong learning with technological

			changes in testing of DC machines.
	PSO1	1	Students will be able to apply the engineering knowledge to describe the types of testing for DC machines.
	PO1	3	Students will be able to describe constructional details and modes
			of operation of single phase and three phase transformers.
	PO6	2	Students will be able to apply reasoning for the selection of
			appropriate transformers for various applications.
	PO12	3	Students will be able to have lifelong learning with technological changes in transformers.
			Students will be able to apply the engineering knowledge to
EET202.5	-301	2	describe the constructional details and modes of operation of single phase and three phase transformers.
	PSO2	2	Students will be able to derive solutions to problems related to
			single phase and three phase transformers.
	PO1	3	Students will be able to describe performance of transformers
			under various conditions.
	PO6	2	Students will be able to apply reasoning for the selection of appropriate transformers based on the performance of transformers.
	PO12	3	Students will be able to have lifelong learning with technological
EET202.6			changes in performance of transformers under various conditions.
	PSO1	2	Students will be able to apply the engineering knowledge to assess
			the performance of transformers under various conditions.
	PSO2	2	Students will be able to derive solutions to problems related to the operation and performance of transformers under various
			conditions.

EEL 202	ELECTRICAL MACHINES LAB	L	Т	Р	CREDIT	Year of Introduction
	- 1	0	0	3	2	2019

СО	Course outcome	Knowledge level
EEL202.1	Analyse the performance of DC motors and DC generators by performing load test.	K4
EEL202.2	Sketch the Open Circuit Characteristics of a self excited DC shunt generator and check conditions of voltage build up by performing suitable experiment.	K3
EEL202.3	Develop equivalent circuit and predetermine their regulation and efficiency by performing OC & SC tests on transformer.	K4
EEL202.4	Analyse the efficiency and regulation of the transformer by performingload test.	K4
EEL202.5	Analyse the efficiency of a DC machine when working as motor and generator by conducting suitable test.	K4
EEL202.6	Examine the efficiency by performing Sumpner's test on two similar transformers.	K3

СО	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS 0 3
EEL202. 1	3	3	2	2					3	2		3			
EEL202. 2	3	3	2	2					3	2		3			
EEL202. 3	3	3	2	2					3	2		3	2	2	1

EEL202. 4	3	3	2	2			3	2	3	2	2	1
EEL202. 5	3	3	2	2			3	2	3			
EEL202. 6	3	3	2	2			3	2	3	1		
Average	3	3	2	2			3	2	3	0.83	0.67	0.33

СО	PO/ PSO	Map ping	Justification
	PO1	3	Students will be able to apply the knowledge of DC motors and DC generators to predict their performance.
	PO2	3	Students will be able to analyse the performance of dc generators and motors by using principles of mathematics, natural sciences, and engineering sciences.
	PO3	2	Students will be able to design system components based on the performance of dc generators and motors.
EEL202.1	PO4	2	Students will be able to provide valid conclusions regarding complex engineering based problems on the characteristics of machines.
	PO9	3	Student will be able to work as a team and function effectively in multidisciplinary environments.
	PO1 0	2	Students will be able to communicate effectively on complex engineering activities on DC machines with the engineering community.
	PO1 2	3	Students will be able to have lifelong learning with technological changes in DC machines.
	PO1	3	Students will be able to apply the knowledge of characteristics of DC generators to predict their performance.
	PO2	3	Students will be able to analyse the performance of dc generators by using principles of mathematics, natural sciences, and engineering sciences.
	PO3	2	Students will be able to design system components based on the performance of dc generators.
EEL202.2	PO4	2	Students will be able to provide valid conclusions regarding complex engineering based problems on the characteristics of DC generators.
	PO9	3	Student will be able to work as a team and function effectively in multidisciplinary environments.
	PO1 0	2	Students will be able to communicate effectively on complex engineering activities on DC generators with the engineering community.

	PO1 2	3	Students will be able to have lifelong learning with technological changes in DC generators.
	PO1	3	Students will be able to apply the knowledge for predetermination of voltage regulation and efficiency of transformers to predict their performance.
EEL202.3	PO2	3	Students will be able to analyse the voltage regulation and efficiency of transformers by predetermination using principles of mathematics, natural sciences, and engineering sciences.
	PO3	2	Students will be able to design system components based on the voltage regulation and efficiency of transformers.
	PO4	2	Students will be able to provide valid conclusions regarding complex engineering based problems on voltage regulation and efficiency of transformers.
	PO9	3	Student will be able to work as a team and function effectively in multidisciplinary environments.
	PO10	2	Students will be able to communicate effectively on complex engineering activities on voltage regulation and efficiency of transformers with the engineering community.
	PO12	3	Students will be able to have lifelong learning with technological changes in improvement of voltage regulation and efficiency of transformers.
	PSO1	2	Students will be able to apply the engineering knowledge on voltage regulation and efficiency of transformers to predict their performance.
	PSO2	2	Students will be able to derive solutions to problems related to voltage regulation and efficiency of transformers.
	PSO3	1	Students will be able to have lifelong learning so as to adapt to dynamic changes in voltageregulation and efficiency of transformers.
	PO1	3	Students will be able to apply the knowledge for determination of voltage regulation and efficiency of transformers to predict their performance.
	PO2	3	Students will be able to analyse the voltage regulation and efficiency of transformers by determination using principles of mathematics, natural sciences, and engineering sciences.
EEL202.4	PO3	2	Students will be able to design system components based on the voltage regulation and efficiency of transformers.
	PO4	2	Students will be able to provide valid conclusions regarding complex engineering based problems on voltage regulation and efficiency of transformers.
	PO9	3	Student will be able to work as a team and function effectively in multidisciplinary environments.

	PO10	2	Students will be able to communicate effectively on complex engineering activities on voltage regulation and efficiency of										
		ſ	transformers with the engineering community.										
			Students will be able to have lifelong learning with technological										
	PO12	3	changes in improvement of voltage regulation and efficiency of										
			transformers.										
			Students will be able to apply the engineering knowledge on										
	PSO1	2	determination of voltage regulation and efficiency of transformers.										
	PSO2	2	Students will be able to derive solutions to problems related to determination of voltageregulation and efficiency of transformers.										
	PSO3	1	Students will be able to have lifelong learning so as to adapt to lynamic changes in voltageregulation and efficiency of ransformers										
	PO1	<b>3</b> Students will be able to apply the knowledge of DC machin											
	operating as generator and motor to predict their perform												
			Students will be able to analyse the performance of dc machines										
	PO2	3	operating as generator and motor by using principles of										
			mathematics, natural sciences, and engineering sciences.										
	PO3	2	Students will be able to design system components based on the										
			performance of dc machines operating as generator and motor.										
			Students will be able to provide valid conclusions regarding										
EEL 202 5	PO4	2	complex engineering based problems on the characteristics of DC										
EEL202.5	200	-	machines operating as generator and motor.										
	PO9	<b>3</b> Student will be able to work as a team and function effect multidisciplinary environments											
			multidisciplinary environments.										
	DO10		Students will be able to communicate effectively on complex										
	POIO	2	engineering activities on DC generators and motors with the										
	DO12	2	Engineering community.										
	rui2	3	students will be able to have inclong learning with technological changes in DC generators and motors										
	<b>Ρ</b> Ω1	2	Students will be able to apply the knowledge for examining										
	101	3	efficiency of transformers to predict their performance										
			Students will be able to analyse the efficiency of two similar										
	PO2	3	transformers by using principles of mathematics natural sciences										
	102	5	and engineering sciences										
	PO3	2	Students will be able to design system components based on the										
	- 00	-	efficiency of transformers.										
			Students will be able to provide valid conclusions regarding										
	PO4	2	complex engineering based problems on										
		Γ	efficiency of transformers.										
	PO9	3	Student will be able to work as a team and function effectively in										

			multidisciplinary environments.
	PO10	2	Students will be able to communicate effectively on complex engineering activities on efficiency of transformers with the engineering community.
EEL202.6	PO12	3	Students will be able to have lifelong learning with technological changes in improvement of efficiency of transformers.
	PSO1	1	Students will be able to apply the engineering knowledge on efficiency of transformers to predict their performance.

EST 200	DESIGN & ENGINEERING	L	Т	Р	CREDIT	Year of Introduction
		2	0	0	2	2019

CO s	Description	Knowledge Level
1	Explain the different concepts and principals involved in design engineering.	Remember, Understand (Level 1 & 2) k2
2	Apply design thinking while learning and practicing engineering. Develop innovative, reliable, sustainable and economically viable	Apply (Level 3) K3
3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering	Apply (Level 3) K3

# MAPPING

CO ·	CO – PO Matrix													
CO s	PO 1	РО 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	1					1			1				
CO2		2				1		1				2		
CO3			2			1	1		2			1		

		LEVEL	Justificatio n
CO 1 PO1	1-	2	Students will be able to apply the concepts and principles of design engineering.
CO PO2	1-	1	Students will be able to analyze and design complex engineering problems.
CO1 -PO7		1	Students will be able to understand the impact of engineering designs in societal and environmental contexts.
CO1 -PO10		1	Students will be able to communicate the designs effectively to the engineering community and society at large.

CO2 -PO10	2	Students will be able to analyze and design complex engineering problems by applying a design thinking approach.
CO2 -PO6	1	Students will be able to apply a design thinking approach considering the societal, health, safety, legal, and cultural issues.
CO2 -PO8	1	Students will be able to apply a design thinking approach while adhering to ethics and professional responsibility.
CO2 -PO12	2	Students will be able to recognize the need for & engage in independent and life-long learning in the context of technological change.
CO3 -PO 3	2	Students will be able to design and develop innovative products in the computer science area to meet societal needs and thereby emerge as eminent researchers and entrepreneurs.
CO3 -PO 6	1	Students will be able to develop designs considering the societal, health, safety, legal, and cultural issues.
CO3 -PO 7	1	Students will be able to develop designs, understanding the impact of engineering designs in societal and environmental contexts.
CO3 -PO 9	2	Students will function effectively as an individual, and as a member or leader in teams, and in multidisciplinary settings while developing innovative designs.

CO3 -PO 10	2	Students will be able to communicate the designs they develop effectively to the engineering community and society at large.
CO3 -PO 12	1	Students will be able to recognize the need for & engage in independent and life-long learning in the context of technological change while involving design and development.

5	

ЕЕТ 307	SYNCHRONOUS AND	L	Т	Р	CREDIT	Year of Introduction
	MACHINES	3	1	0	4	2019

CO	Course outcome	Knowledg		
CO	Course outcome	e		
		level		
EET307.1	Analyse the performance of different types of alternators.	K3		
EET307.2	Analyse the performance of a synchronous motor.	K3		
EET307.3	Analyse the performance of different types of induction motors.	K3		
EET307.4	Describe operating principle of induction machine as generator.	K2		
EET307.5	Explain the types of single phase induction motors and their working principle.	K2		

СО	Р О 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS 0 3
EET307. 1	2	2				2						2	2	1	
EET307. 2	3	3	2			2						2	1	1	
EET307. 3	3	3	2			2						2	2	1	
EET307. 4	3	3	2			2						2	2	1	
EET307. 5	2	2				2						2	2	1	
Average	2.6	2.6	1.2			2						2	1.8	1	

СО	PO/ PSO	Map ping	Justification
	PO1	2	Students will be able to describe the performance of different types of alternators.
	PO2	2	Students will be able to analyse the alternators using the performance characteristics.
	PO6	2	Students will be able to apply reasoning based on performance of alternators for the responsibilities relevant to the professional engineering practice.
EET307.1	PO1 2	2	Students will be able to have lifelong learning with technological changes in performance of different types of alternators.
	PSO 1	2	Students will be able to apply the engineering knowledge on performance of different types of alternators.
	PSO 2	1	Students will be able to derive solutions to problems related to the operation and performance of different types of alternators at various conditions.
	PO1	3	Students will be able to describe the performance of synchronous motor.
	PO2	3	Students will be able to analyse the synchronous motor using the performance characteristics.
	PO3	2	Students will be able to design system components based on the performance of synchronous motor.
EET307.2	PO6	2	Students will be able to apply reasoning based on performance of synchronous motor for the responsibilities relevant to the professional engineering practice.
	PO1 2	2	Students will be able to have lifelong learning with technological changes in performance of synchronous motor.
	PSO 1	1	Students will be able to apply the engineering knowledge on performance of synchronous motor.
	PSO 2	1	Students will be able to derive solutions to problems related to the operation and performance of synchronous motor at various conditions.
	PO1	3	Students will be able to describe the performance of different types of induction motors.
	PO2	3	Students will be able to analyse different types of induction motors using the performance characteristics.
EET307.3	PO3	2	Students will be able to design system components based on the performance of different types of induction motors.
	PO6	2	Students will be able to apply reasoning based on performance of different types of induction motors for the responsibilities relevant to the professional engineering practice.

	PO1 2	2	Students will be able to have lifelong learning with technological changes in performance of different types of induction motors.
--	-------	---	-----------------------------------------------------------------------------------------------------------------------------------

	PSO 1	2	Students will be able to apply the engineering knowledge on performance of different types of induction motors.
	PSO 2	1	Students will be able to derive solutions to problems related to the operation and performance of different types of induction motors at various conditions.
	PO1	3	Students will be able to describe the operating principle of induction machine as generator.
	PO2	3	Students will be able to analyse the operation of induction machine as generator.
	PO3	2	Students will be able to design system components based on the operation of induction machine as generator.
EET307.4	PO6	2	Students will be able to apply reasoning based on operation of induction machine as generator for the responsibilities relevant to the professional engineering practice.
	PO1 2	2	Students will be able to have lifelong learning with technological changes in operation of induction machine as generator.
	PSO 1	2	Students will be able to apply the engineering knowledge on operation of induction machine as generator.
	PSO 2	1	Students will be able to derive solutions to problems related to the operation of induction machine as generator at various conditions.
	PO1	2	Students will be able to describe the types of single phase induction motors and their working principle.
	PO2	2	Students will be able to analyse the operation of single phase induction motors.
EET307.5	PO6	2	Students will be able to apply reasoning based on operation of different types of single phase induction motors for the responsibilities relevant to the professional engineering practice.
	PO1 2	2	Students will be able to have lifelong learning with technological changes in operation of single phase induction motors.
	PSO 1	2	Students will be able to apply the engineering knowledge on operation of single phase induction motors.
	PSO 2	1	Students will be able to derive solutions to problems related to the operation of single phase induction motors at various conditions.

EEL 333	ELECTRICAL MACHINESLAB-	L	L T P CREDIT		CREDIT	Year of Introduction	
	11	0	0	3	2	2019	

EEL333.1	Analyse the performance of single phase and three phase induction motors by conducting suitable tests.	K4
EEL333.2	Analyse the performance of three phase synchronous machine from V and inverted V curves.	K4
EEL333.3	Analyse the performance of a three phase alternator by conducting suitable tests.	K4

СО	Р О 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS O 3
EEL333. 1	3	3	2	2					3	2		3	2	2	1
EEL333. 2	3	3	2	2					3	2		3	2		
EEL333. 3	3	3	2	2					3	2		3	2	2	1
Average	3	3	2	2					3	2		3	2	1.33	0.67

СО	PO/	Map	Justification
	P20	ping	
	PO1	3	Students will be able to apply the knowledge of single phase and three phase induction motors to predict their performance.
			Students will be able to analyse the performance of single phase
	PO2	3	and three phase induction motors by using principles of
			mathematics, natural sciences, and engineering sciences.
	PO3	2	Students will be able to design system components based on the performance of single phase and three phase induction motors.
			Students will be able to provide valid conclusions regarding
	PO4	2	complex engineering based problems on the characteristics of
			single phase and three phase induction motors.
	DOO	3	Student will be able to work as a team and function effectively in
	PO9	3	multidisciplinary environments.
EEL333.1			Students will be able to communicate effectively on complex
	PO1	2	engineering activities on single phase and three phase induction
	0		motors with the engineering community.
	PO1	3	Students will be able to have lifelong learning with technological
	2	5	changes in single phase and three phase induction motors.
	2		Students will be able to apply the engineering knowledge on
	PSO	2	single phase and three phase induction motors.
	1		
	PSO	2	Students will be able to derive solutions to problems related to
	2	-	single phase and three phase induction motors.
			Students will be able to have lifelong learning so as to adapt to
	PSO	1	dynamic changes in performance of single phase and three phase
	3		induction motors.
	DO 1	2	Students will be able to apply the knowledge of three phase
	POI	3	synchronous machine to predict their performance.
	DOJ	3	Students will be able to analyse the performance of three phase
	102	5	synchronous machine by using V curve.
	PO3	2	Students will be able to design system components based on the
	105	2	performance of three phase synchronous machine.
			Students will be able to provide valid conclusions regarding
	PO4	2	reactive power compensation based on the V-curve of three phase
EEL333.2			synchronous machine.
	PO9	3	Student will be able to work as a team and function effectively in
		FU9 3	multidisciplinary environments.

	PO1 0	2	Students will be able to communicate effectively on complex engineering activities on three phase synchronous machine with the engineering community.
	PO1 2	3	Students will be able to have lifelong learning with technological changes in three phase synchronous machine.
	PSO1	2	Students will be able to apply the engineering knowledge for analyzing the performance of performance of three phase synchronous machine based on Vcurve.
	PO1	3	Students will be able to apply the knowledge of three phase
			alternator to predict the performance.
	PO2	3	Students will be able to analyse the performance of three phase
EEL333.3			alternator.
	PO3	2	Students will be able to design system components based on the performance of three phase alternator.
	PO4		Students will be able to provide valid conclusions regarding
		2	reactive power compensation based on various tests on three
	PO9		phase alternator.
		3	Student will be able to work as a team and function effectively in
			multidisciplinary environments.
	PO10	2	Students will be able to communicate effectively on complex engineering activities on three phase alternator with the engineering community.
	PO12	3	Students will be able to have lifelong learning with technological
			changes in three phase alternator.
	DCO1		Students will be able to apply the engineering knowledge for
	PS01	2	analyzing the performance of a three phase alternator by conducting suitable tests.
	PSO2	2	Students will be able to derive solutions to problems related to the
			performance of a three phase alternator.
	PSO3	1	Students will be able to have lifelong learning so as to adapt to dynamic changes in the performance of a three phase alternator.

ЕЕТ 305	SIGNALS AND SYSTEMS	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

No.	Course outcomes	Knowledge Level
CO 1	Apply properties of signals and systems to classify them	K2
CO 2	Apply fourier series and fourier transform concepts for continuous time signals	К3
CO 3	Analyze continuous time system with Laplace transform	K4
CO 4	Analyze discrete time system with Z transform	K4
	Apply fourier series and fourier transform concepts for discrete time systems.	
CO 5		K3
	Describe the concept of stability of continuous time system and sampled data	
CO6	System.	K2

# MAAPING

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	3	3	-	-	2	-	-	-	-	-	-	1	3	-	-
CO 2	3	3	3	-	-	-	-	-	-	-	1	1	3	_	-
CO 3	3	3	3	I	2	I	I	I	I	-	-	2	3	-	-
CO 4	3	3	3	-	2	-	-	-	-	-	I	2	3	-	-
CO 5	3	3	3	-	-	-	-	-	-	-	-	2	3	-	-
CO 6	3	3	-	-	2	-	-	-	-	-	-	1	3	-	-

Mapping	Mapping Level (3/2/1)	Justifications
CO1 – PO1	3	Knowledge in properties of signals and systems will help to solve many engineering problems.
CO 1 – PO2	3	Knowledge in properties of signals and systems will help to identify and formulate engineering problems.
CO 1 – PO5	2	Opertions of signal can be studied in modern tools like MATH lab
CO1 – PO12	1	Fundamental knowledge in properties of signals and systems is used in context of technological change.
CO1 – PSO1	3	Knowledge in operations on various signals and systems will help in the design, analysis and development of various electrical systems
CO2 – PO1	3	Fundamental knowledge in Fourier series, Fourier transforms (CT system) can be applied to the solution of various engineering problems.
CO2 – PO2	3	Knowledge in Fourier series, Fourier transforms(CT system) will help to formulate and analyze complex engineering problems.
CO2 – PO3	3	Knowledge in various series and transforms(CT system) can be applied to the development of solution for complex engineering problems.
CO2 – PO12	1	Knowledge in Fourier series, Fourier transforms(CT system) will help in context of technological change.
CO2 – PSO1	3	Knowledge in Fourier series, Fourier transforms(CT system) will help in the design, analysis and development of various electrical systems.
CO3 – PO1	3	Fundamental knowledge in Laplace transforms can be applied to the solution of various engineering problems.
CO3 – PO2	3	Knowledge in LT will help to formulate and analyze complex engineering problems.
CO3 – PO3	3	Knowledge in LT can be applied to the development of solution for complex engineering problems.
CO3 – PO5	2	Knowledge of LT can be simulated by modern tools like MATH lab etc

CO3 – PO12	2	Knowledge in LT will help to recognize the need for technological change.
CO3 – PSO1	3	Knowledge in LT will help in the design, analysis and maintain various types of electrical systems and challenges in the field.
CO4 – PO1	3	Knowledge in Z transform will help to design the LTI system.
CO4 – PO2	3	Knowledge in the Discrete time system with Z transform will help to formulate and analyze complex engineering problems.
CO4 – PO3	3	Knowledge in Z transform can be applied to the development of solution for complex engineering problems.
CO4 – PO5	2	Knowledge of Z transform can be simulated by modern tools like MATH lab
CO4 – PO12	2	Knowledge in Z transform will help to recognize the need for technological change.
CO4 – PSO1	3	Knowledge in Z transform will help in the design, analysis and development of various electrical systems.
CO5 – PO1	3	Knowledge in Fourier series and Fourier transform concepts in DT systems can be applied to the solution of complex engineering problems.
CO5 – PO2	3	Knowledge in Fourier series and Fourier transform concepts in DT systems will help to identify and formulate complex engineering problems.
CO5 – PO3	3	Knowledge in Fourier series and Fourier transform concept in DT systems will help to design solutions for complex engineering problems.
CO5 – PO12	2	Knowledge in fourier series and fourier transform will help to recognize the need for technological change.
CO5 – PSO1	3	Knowledge in FS and FT transform will help in the design, analysis and development of various electrical systems.
CO6- PO1	3	Knowledge in sampling theorem can be applied to design a reliable digital signal processing system.
CO56–PO2	3	Knowledge in sampling theorem can be used to formulate a reliable digital signal processing system.
CO6 – PO5	2	Knowledge in sampling theorem can be simulated by modern tools like matlab etc
CO6 – PO12	1	Knowledge in sampled data systems and stability concepts will help to recognize the need for technological change.
CO6– PSO1	3	Knowledge in sampling theorem will help in the design and development of a reliable digital signal processing system.

CYCLE 1 - NAAC ACCREDITATION 2023

ЕЕТ 303	MICROPROCESS ORS AND	L	Т	Р	CREDIT	Year of Introduction	
	CONTROLLERS	3	1	0	4	2019	

СО	Course outcome	Knowledge level						
EET303. 1	Describe the architecture and timing diagram of 8085 microprocessor.	K2						
EET303. 2	Develop assembly language programs in 8085 microprocessor.	K3						
EET303. 3	Identify the different ways of interfacing memory and I/O with 8085 microprocessor.							
EET303. 4	Understand the architecture of 8051 microcontroller and embedded systems.	K2						
EET303. 5	Develop assembly level and embedded C programs in 8051 microcontroller.	К3						

	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P 01 1	PO 1 2	PSO 1	PS O2	PS O 3
C O1	3	2											1	-	-
C O2	3	2	3	2	1								2	2	1
C 03	3	2	2	2	2								3	3	1
C O4	3	2											1	-	-
C O5	3	2	3	2	1	1						1	2	2	1
A V G	3	2	3	2	1	1	-	-	-	-	-	1	2	2	1

СО-РО-	LEVEL (Low/Moderate/H	JUSTIFICA
PSO	igh)	
EET303.1-PO1	3	Apply the knowledge of architecture and timing diagram of 8085 microprocessor for the solution of complex engineering problems.
EET303.1-PO2	2	Apply the knowledge of timing diagram of 8085 microprocessor to analyze engineering problemsreaching conclusions.
EET303.1- PSO1	1	Utilize the knowledge of the architecture and timing diagram of the 8085 microprocessor to design, commission, and maintain a variety of electrical systems in the field.
EET303.2-PO1	3	Develop assembly language programs in 8085 microprocessor for the solution of complex engineering problems.
EET303.2-PO2	2	Develop assembly language programs in 8085 microprocessor to analyze engineering problemsreaching conclusions.
EET303.2-PO3	3	Knowledge gained from development of assembly language programs in 8085 microprocessor canbe used for design/development of solutions.
EET303.2-PO4	2	Conduct investigations of complex problems by developing assembly language programs in 8085 microprocessor.
EET303.2-PO5	1	Modern tool usage is used in developing assembly language programs in 8085 microprocessor.
EET303.2- PSO1	2	Utilize the knowledge of assembly language programs in 8085 microprocessor to design, commission, and maintain a variety of electrical systems in the field.
EET303.2- PSO2	2	Develop sustainable solutions to complex electrical engineering problems by assembly language programs in 8085 microprocessor.

EET303.2- PSO3	1	Adapt to changing work cultures by learning assembly language programs in the 8085 microprocessor on a lifelong
		basis.
EET303 3-PO1	3	and
	5	I/O with 8085 microprocessor for the solution
		of complex engineering problems.
EET303 3-PO2	2	and
EE1303.3-102		I/O with 8085 microprocessor to
		analyzeengineering problems reaching
		conclusions. Knowledge gained from different ways
FFT303 3-PO3	2	of
LL1303.3-103		interfacing memory and I/O with 8085
		microprocessor can be used for
		design/development of solutions.
EET303.3-PO4	2	developing different ways of interfacing
		memory and 1/O with 8083 microprocessor.
		Modern tool usage is used in different ways of
EET303.3-PO5	2	interfacing memory and I/O with 8085
		microprocessor.
		Utilize the knowledge of different ways of interfacing memory and I/O with 8085
EET303 3 PSO1	3	microprocessor, to design, commission, and
EE1303.3-1301	5	maintain a variety of electrical systems in the field.
		Develop sustainable solutions to
EET303.3-PSO2	3	complex electrical engineering problems
		memory and I/O with 8085 microprocessor.
		Adapt to changing work cultures by learning
EET303.3-PSO3	1	memory interfacing programs in the 8085 microprocessor on a lifelong basis
		the boost incroprocessor on a metong basis.
		Apply the architecture of 8051 microcontroller
EET303.4-PO1	3	and embedded systems for the solution of complex engineering problems
		compton engineering problems.
		To analyze engineering problems and reaching
EET303.4-PO2	2	microcontroller and embedded systems

EET303.4-PSO1	1	Utilize the knowledge of the architecture of 8051 microcontroller and embedded systems., to design, commission, and maintain a variety of electrical systems in the field.
EET303.5-PO1	3	Develop assembly level and embedded C programs in 8051 microcontroller for the solution of complex engineering problems.
EET303.5-PO2	2	Develop assembly level and embedded C programs in 8051 microcontroller to analyze engineering problems reaching conclusions.
EET303.5-PO3	3	Knowledge gained from development assembly level and embedded C programs in 8051 microcontroller can be used for design/development of solutions.
EET303.5-PO4	2	Conduct investigations on complex problems by developing assembly level and embedded C programs in 8051 microcontroller.
EET303.5-PO5	1	Modern tool usage is used in developing assembly level and embedded C programs in 8051 microcontroller.
EET303.5-PO6	1	Apply assembly level and embedded C programs in 8051 microcontroller to assess societal, health, safety issues relevant to the professional engineering practice.
EET303.5-PO12	1	Ability to engage in independent and life-long learning by developing assembly level and embedded C programs.
EET303.5-PSO1	2	Utilize the knowledge of assembly level and embedded C programs to design, commission, and maintain a variety of electrical systems in the field.
EET303.5-PSO2	2	Develop sustainable solutions to complex electrical engineering problems by assembly level and embedded C programs of 8051 microcontroller
EET303.5-PSO3	1	Adapt to changing work cultures by learning assembly level and embedded C programs of 8051 microcontroller on a lifelong basis.

ЕЕТ 301	POWER SYSTEMS 1	L T		Р	CREDIT	Year of Introduction		
		3	1	0	4	2019		

1	Identify the power generating system appropriate for a given area.
2	Evaluate the electrical performance of any transmission line.
3	Compute various physical characteristics of underground and overhead transmission systems.
4	Select appropriate switchgear for protection schemes
5	Design a simple electrical distribution system as per the standards.

EET 301 Power Systems I															
	PO.1	PO.2	PO .3	PO .4	PO .5	PO .6	PO .7	PO .8	PO .9	PO .10	PO .11	PO .12	PSO .1	PSO .2	PSO .3
CO1	3					2		2			1	2	1	1	1
CO2	3	3											1		
CO3	3	2				2	2	2					1		1
CO4	3	1				2		2				1	1		1
CO5	3	1				2	2	2			1	2	1	1	1
E

	Justification of mapping
CO1	Able to apply the knowledge of mathematics and electrical engineering fundamentals to identify the power generating system appropriate for agiven area.(PO1)
	Able to apply reasoning informed by the contextual knowledge in electrical engineering to assess societal, safety and the consequent responsibilities relevant to the professional electrical engineering practice (PO6) Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the electrical engineering while selecting an area for power generation(PO8)
	Able to demonstrate knowledge and understanding of the power engineering and be able to apply these to manage their power system related projects (PO11)
	Recognize the need for and have the ability to engage in life-long learning in the area of power system(PO12)
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) in the area of power system
CO2	Able to have knowledge about the electrical performance of transmission line(PO1)
	Able to analyse the different transmission line parameters(PO2)
	Apply knowledge about the electrical performance of transmission line for selecting suitable transmission line circuits in power system (PSO1)

CO3	Able to have knowledge about physical characteristics of underground and overhead transmission systems (PO1)
	Able to analyse the characteristics of various overhead and underground
	Able to apply reasoning informed by the contextual knowledge in various transmission systems to assess societal, safety and the consequent responsibilities relevant to the professional electrical engineering practice (PO6)
	Able to understand the impact of the power engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development of transmission systems (PO7) Apply ethical principles and commit to professional ethics and responsibilities and norms of the electrical engineering while selecting
	proper transmission system (PO8) Apply knowledge(PSO1)and empower students for lifelong learning (PSO3) in the area of power system
CO4	Able to have knowledge about power system protection (PO1) Able to analyse the characteristics of various switchgear for protection schemes (PO2)
	Able to apply reasoning informed by the contextual knowledge in various switchgear protection schemes to assess safety issues and the consequent responsibilities relevant to the electrical engineering practice (PO6)
	Apply ethical principles and commit to professional ethics and responsibilities and norms of the electrical engineering while selecting proper switchgear for protection schemes (PO8)

	Recognize the need for and have the ability to engage in life-long learning in the power system protection (PO12)
	Apply knowledge(PSO1) and empower students for lifelong learning (PSO3) in the area of switchgear protection.
CO5	Able to apply the knowledge of mathematics and electrical engineering fundamentals to design a simple electrical distribution system as per the standards. (PO1)
	Able to design and analyse a simple electrical distribution system (PO2) Able to apply reasoning informed by the contextual knowledge in power engineering to assess societal, safety and the consequent responsibilities relevant to the development of a simple electrical distribution system (PO6)
	Able to understand the impact of the electrical engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development in the area of designing electrical distribution system. (PO7)
	Apply ethical principles and commit to professional ethics and responsibilities and norms of the electrical engineering while designing an electrical distribution system (PO8)
	Able to demonstrate knowledge and understanding of the power engineering and be able to apply these while designing an electrical distribution system (PO11)
	Recognize the need for, and have the preparation and ability to engage in life-long learning in the area of electrical distribution system design (PO12)
	Apply knowledge (PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) in the area of electrical distribution system design

HUT 310	MANAGEMENT FOR ENGINEERS	L	Т	Р	CREDIT	Year of Introduction
		3	0	0	3	2019

СО	Course outcome	Knowledg elevel
HUT310.1	Explain the characteristics of management in the contemporary context.	K2
HUT310.2	Describe the functions of management.	K2
HUT310.3	Demonstrate ability in decision making process and productivity analysis.	K2
HUT310.4	Illustrate project management technique and develop a project schedule.	К3
HUT310.5	Summarize the functional areas of management.	K2
HUT310.6	Comprehend the concept of entrepreneurship and create business plans.	K2

#### MAPPING

P O		Programme outcomes								PS O				
	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PSO	PS
C	0	0	0	0	0	0	0	0	0	0	0	0	1	02
0	1	2	3	4	5	6	7	8	9	1	1	1		
										0	1	2		
CO	2	-	-	-	1	2	2	2	-	2	1	1	-	-
1														
CO	2	-	-	-	1	1	-	2	1	2	1	1	-	-
2														
CO	2	2	2	2	1	-	-	-	-	-	-	-	-	-
3														
CO	2	2	2	2	1	-	-	-	-	_	2	1	_	-
4														
CO	2	-	_	-	-	1	1	-	1	2	1	_	_	-
5									_	_	_			
CO	-	2	2	2	1	1	1	1	1	1	1	1	-	-
6														
AV	C	C	n	2	1	1.	1.3	1.	1	17	1.2	1		
G	Z	Z	Z	Z	1	2	3	6	1	1./	1.2	1	-	-
						5		6		Э				

	LEVEL	
CO-PO-PSO	(Low/Moderate/H	JUSTIFICA
	igh)	TION
HUT310.1-PO1	2	Understanding the characteristics of management, students are expected to applythe engineering knowledge in order to become astounding professional managers in an organization.
HUT310.1-PO5	1	With the knowledge gained from the characteristics of management, students are expected to use modern tools with respective to the scenario they confront for enhancing the managerial roles.
HUT310.1-PO6	2	After the completion of course, students are expected to become competent managers by utilizing the principles of efficiency and effectiveness for the growth and development of the society.
HUT310.1-PO7	2	Understanding the characteristics of management, students are expected to work as dedicated managers for the sustainable growth and the protection of the environment.
HUT310.1-PO8	2	With the knowledge gained from the characteristics of management, students are expected to portray ethical values like integrity, transparency, accountability, impartiality and equity which are inevitable for the organizational growth.
HUT310.1-PO10	2	After the completion of course, students are expected to communicate with different levels of managers and team for the enormous progression of the organization.
HUT310.1-PO11	1	Understanding the characteristics of management, students are expected to manage projects efficiently by regulating the finance for creating a surplus in an organization.
HUT310.1-PO12	1	With the knowledge gained from the characteristics of management, students are expected to acquire the significance and principles of management for personal and professional growth.

HUT310.2-PO1	2	Understanding the functions of management, students are expected to apply the engineering knowledge in order to become astounding professional managers in an organization.
HUT310.2-PO5	1	With the knowledge gained from the functions of management, students are expected to use modern tools with respective to the scenario they confront for enhancing the managerial roles.
HUT310.2-PO6	1	Understanding the functions of management, students are expected to become competent managers by utilizing the principles of efficiency and effectiveness for the growth and development of the society.
HUT310.2-PO8	2	With the knowledge gained from the functions of management, students are expected to portray ethical values like integrity, transparency, accountability, impartiality and equity which are inevitable for the organizational growth.
HUT310.2-PO9	1	Understanding the functions of management, students are expected to work both individually and team for the betterment of the organization irrespective of the gender.
HUT310.2-PO10	2	With the knowledge gained from the functions of management, students are expected to communicate with different levels of managers and team for the enormous progression of the organization.
HUT310.2-PO11	1	After the completion of course, students are expected to manage projects efficiently by regulating the finance for creating a surplus in an organization.
HUT310.2-PO12	1	Understanding the functions of management, students are expected to acquire the significance and principles of management for personal and professional growth.
HUT310.3-PO1	2	Understanding the decision-making process and productivity analysis, students are expected to apply the engineering knowledge in order to become astounding professional managers in an organization.
HUT310.3-PO2	2	With the knowledge gained from the decision- making process and productivity analysis, students are expected to analyze both simple and crucial problems confronted by the employee in an organization as well as the

		organization as a whole.
HUT310.3-PO3	2	Understanding the decision-making process and productivity analysis, students are expected to
		develop proper and timely solutions to each and every problem for the smooth functioning of an organization.
HUT310.3-PO4	2	With the knowledge gained from the decision- making process and productivity analysis, students are expected to conduct precise investigations of complex problems in order to address it appropriately for the advancement of an organization.
HUT310.3-PO5	1	Understanding the decision-making process and productivity analysis, students are expected to use modern tools with respective to the scenario they confront for enhancing the managerial roles.
HUT310.4-PO1	2	With the knowledge gained from the project management technique, students are expected to apply the engineering knowledge in order to become astounding managers in an organization.
HUT310.4-PO2	2	Understanding the project management technique, students are expected to analyze both simple and crucial problems confronted by the employee in an organization as well as the organization as a whole.
HUT310.4-PO3	2	With the knowledge gained from the project management technique, students are expected to develop proper and timely solutions to each and every problem for the smooth functioning of an organization.
HUT310.4-PO4	2	Understanding the project management technique, students are expected to conduct precise investigations of complex problems in order to address it appropriately for the advancement of an organization.

HUT310.4-PO5	1	After the completion of course, students are expected to use modern tools with respective to the scenario they confront for enhancing the managerial roles.
HUT310.4-PO11	2	With the knowledge gained from the project management technique, students are expected to manage projects efficiently by regulating the finance for creating a surplus in an organization.
HUT310.4-PO12	1	Understanding the project management technique, students are expected to acquire the significance and principles of management for personal and professional growth.
HUT310.5-PO1	2	With the knowledge gained from the functional areas of management, students are expected to apply the engineering knowledge in order to become astounding professional managers in an organization.
HUT310.5-PO6	1	Understanding the functional areas of management, students are expected to become competent managers by utilizing the principles of efficiency and effectiveness for the growth and development of the society.
HUT310.5-PO7	1	After the completion of course, students are expected to work as dedicated managers for the sustainable growth and the protection of the environment.
HUT310.5-PO9	1	With the knowledge gained from the functional areas of management, students are expected to work both individually and team for the betterment of the organization irrespective of the gender.
HUT310.5-PO10	2	Understanding the functional areas of management, students are expected to communicate with different levels of managers and team for the enormous progression of the organization.
HUT310.5-PO11	1	After the completion of course, students are expected to manage projects efficiently by regulating the finance for creating a surplus in an organization.
HUT310.6-PO2	2	With the knowledge gained from the concept of entrepreneurship, students are expected to analyze both simple and crucial problems confronted by the employee in an organization as well as the organization as a whole.

НUT310.6-РОЗ	2	Understanding the concept of entrepreneurship, students are expected to develop proper and timely solutions to each and every problem for the smooth functioning of an organization.
HUT310.6-PO4	2	With the knowledge gained from the concept of entrepreneurship, students are expected to conduct precise investigations of complex problems in order to address it appropriately for the advancement of an organization.
HUT310.6-PO5	1	Understanding the concept of entrepreneurship, students are expected to use modern tools with respective to the scenario
		they confront for enhancing the managerial roles.
HUT310.6-PO6	1	After the completion of course, students are expected to become competent managers by utilizing the principles of efficiency and effectiveness for the growth and development of the society.
HUT310.6-PO7	1	With the knowledge gained from the concept of entrepreneurship, students are expected to work as dedicated managers for the sustainable growth and the protection of the environment.
HUT310.6-PO8	1	Understanding the concept of entrepreneurship, students are expected to portray ethical values like integrity, transparency, accountability, impartiality and equity which are inevitable for the organizational growth.
HUT310.6-PO9	1	After the completion of course, students are expected to work both individually and team for the betterment of the organization irrespective of the gender.
HUT310.6-PO10	1	With the knowledge gained from the concept of entrepreneurship, students are expected to communicate with different levels of managers and team for the enormous progression of the organization.
HUT310.6-PO11	1	Understanding the concept of entrepreneurship, students are expected to manage projects efficiently by regulating the finance for creating a surplus in an organization.

HUT310.6-PO12	1	After the completion of course, students are
		expected to acquire the significance and
		principles of management for personal and
		professional growth.

MCN 301	DISASTER MANAGEMENT	L	Т	Р	CREDIT	Year of Introduction
		2	0	0	-	2019

СО	Course outcome					
MCN301. 1	Define and use various terminologies in use in disaster management parlance and organise each of these terms in relation to the disaster management cycle	K2				
MCN301. 2	Distinguish between different hazard types and vulnerability types and do vulnerability assessment	K2				
MCN301. 3	Identify the components and describe the process of risk assessment, and apply appropriate methodologies to assess risk.	K2				
MCN301. 4	Explain the core elements and phases of Disaster Risk Management and develop possible measures to reduce disaster risks across sector and community.	K3				
MCN301. 5	Identify factors that determine the nature of disaster response and discuss the various disaster response actions	K2				
MCN301. 6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level.	K2				

P O		Programme outcomes											-	PSO		
C O	Р О 1	P O 2	P O 3	P O 4	Р О 5	P O 6	Р О 7	P O 8	Р О 9	P O 10	P O 11	PO 12	PS O1	PS O2	P S O 3	
C 01	-	2	-	-	-	2	-	-	-	2	-	2	-	-	-	
C O2	2	3	2	-	2	2	3	-	-	3	-	2	-	-	-	
C O3	2	3	2	2	2	2	3	-	-	3	-	2	-	-	-	
C O4	3	3	3	-	2	2	3	-	-	-	-	2	-	-	-	
C 05	3	3	-	-	2	2	3	-	-	-	-	2	-	-	-	
C 06	3	-	-	-	-	2	3	3	-	-	-	2	-	-	-	
A V G	2. 6	2. 8	2. 3 3	2	2	2	3	3	-	2. 67	_	2	-	-	-	

СО-РО	LEVEL (Low/Moderate/Hi gh)	JUSTIFICATION
MCN301.CO1- PO2	М	Students can understand the various terminologies in disaster management which help them to grow professionally.
MCN301.CO1- PO6	М	Students can apply the knowledge gained to assess the disasters and take necessary measures.
MCN301.CO1- PO10	М	Students will able to help the documentation of disasters for future reference.
MCN301.CO1- PO12	М	Students can recognize the need for identification and proper management of disaster.
MCN301.CO2- PO1	М	Students can understand about hazard types andvulnerability types which help them to act

		as the best tool to win against disaster.
MCN301.CO2- PO2	Н	Students will able to assess vulnerability whichmake them to solve disaster related problems.
MCN301.CO2- PO3	М	Students will able to develop new and sustainablemeasures to fight against disaster through vulnerability assessment.
MCN301.CO2- PO5	М	Students will able to perform hazard mapping to analyse the characteristics of hazard.
MCN301.CO2- PO6	М	Students will able to apply the knowledge to assess the societal, health, safety and cultural issues in the disaster management perspective.
MCN301.CO2- PO7	Н	Students can apply the vulnerability assessment methodologies for the sustainable development and disaster management.
MCN301.CO2- PO10	Н	Students can communicate effectively with the society and professionals to give clear instructions about hazard and vulnerability.
MCN301.CO2- PO12	М	Students will able to be updated every day about the technological changes in vulnerability assessment.
MCN301.CO3- PO1	М	Students will able to apply the understanding of risk assessments in the advent of disasters.
MCN301.CO3- PO2	Н	Students will able to put in appropriate methodologies to assess risk which reduce the impacts of disaster.
MCN301.CO3- PO3	М	Students will able to design solutions with the risk assessment methodologies in the disaster scenario.
MCN301.CO3- PO4	М	Students will able to apply research methods andknowledge in the analysis and interpretation of risks.
MCN301.CO3- PO5	М	Students can utilize appropriate methodologies to assess disaster risks.
MCN301.CO3- PO6	М	Students will get an awareness about the responsibilities and necessity of risk assessment.
MCN301.CO3- PO7	Н	Students will able to utilize the risk assessment in

		societal and environmental context
MCN301.CO3- PO10	Н	Students will able to transfer instructions efficiently regarding assessed risks and to draft reports.
MCN301.CO3- PO12	М	Students will be aware about the recent methodologies in risk assessment.
MCN301.CO4- PO1	Н	Students will able to utilize the knowledge of disaster risk management to solve complex disaster related issues.
MCN301.CO4- PO2	Н	Students will able to identify and analyse the problems and develop possible measures to reduce disaster risks.
MCN301.CO4- PO3	Н	Students will able to apply risk assessment methodologies with the proper consideration for public health and safety.
MCN301.CO4- PO5	М	Students can utilize the idea of phases of disaster risk management and analyse its limitations.
MCN301.CO4- PO6	М	Students will able to utilize the contextual knowledge to practice professional engineering and to reduce disaster risk across sector and community.
MCN301.CO4- PO7	Н	Students will able to recognize and demonstrate knowledge for disaster risk management and sustainable development.
MCN301.CO4- PO12	М	Students will able to understand the need for updation of knowledge in risk management measures.
MCN301.CO5- PO1	Н	Students will able to understand the nature of disaster response and apply the knowledge to solve related problems.
MCN301.CO5- PO2	Н	Students can analyse the various disaster response actions.
MCN301.CO5- PO5	М	Students will able to frame and apply disaster response actions effectively.
MCN301.CO5- PO6	М	Students will able to assess safety of the society and health issues affecting people related to the disaster scenario.
MCN301.CO5- PO7	Н	Students will able to understand the effect of professional engineering solutions to take effective disaster response actions.
MCN301.CO5- PO12	М	Students will able to learn life long in the context of the changes in the various disaster response actions.

MCN301.CO6- PO1	Н	Students will able to apply the knowledge of disaster management and risk reduction as solution for disaster related problems.
MCN301.CO6- PO6	М	Students will able to apply contextual knowledge of various legislations to assess societal, safety, legal and cultural issues.
MCN301.CO6- PO7	Н	Students will able to practice for disaster management and risk reduction for sustainable development.
MCN301.CO6- PO8	Н	Students will able to apply disaster legislations maintaining ethical principles.
MCN301.CO6- PO12	М	Students will able to recognize the need for updating knowledge of risk reduction.

EEL 331	MICROPROCESS ORS AND	L	Т	Р	CREDIT	Year of Introduction
	MICROCONTRO LLERS LAB	0	0	3	2	2019

СО	Course outcome	Knowledge level
EEL331. 1	Develop and execute assembly language programs for solving arithmetic and logical problems using microprocessor/microcontroller.	К3
EEL331. 2	Design and Implement systems with interfacing circuits for various applications.	К3
EEL331. 3	Execute projects as a team using microprocessor/ microcontroller for real life applications.	К3

P O					-	Progra outco	amme omes							P	SO
со	Р О 1	P O2	P O 3	P O4	P O 5	P 06	P O 7	P 08	P O 9	P 0 1 0	P 0 1 1	P 0 1 2	P S O 1	P S O 2	P S O 3
C O1	3	3	2	2	3			2	2	3		2	3	3	-
C O2	3	3	2	2	3			2	2	3		2	3	3	-
C O3	3	3	3	3	3	3	3	3	3	3	2	2	1	1	-
A V G	3	3	2	2	3	3	3	2	2	3	2	2	2	2	-

CO-PO- PSO	LEVEL (Low/Moderat e/High)	JUSTIFICA TION
EEL 331.1- PO1	Н	In depth engineering knowledge to develop and execute assembly language programs for solving arithmetic and logical problems
EEL 331.1- PO2	Н	Develop and execute assembly language programs for analyzing complex engineering problems reaching substantiated conclusions
EEL 331.1- PO3	М	Develop and execute assembly language programs for design solutions for complex engineering problems
EEL 331.1- PO4	М	Use research-based knowledge and research methods to develop and execute assembly language programs for solving arithmetic and logical problems
EEL 331.1- PO5	Н	Develop and execute assembly language programs using modern engineering and IT tools
EEL 331.1- PO8	М	Apply ethical principles and commit to professional ethics and responsibilities in developing assembly language programs for solving arithmetic and logical problems

		Function effectively as an individual, and as a member
EEL 331.1-	М	or leader in diverse teams to develop and execute
PO9		assembly language programs
EEL 221 1	тт	Communicate effectively on complex engineering
EEL 331.1-	Н	activities
POI0		by developing assembly language programs.
		Get ability to engage in independent and life-long
EEL 331.1-	М	learning in developing and execution of assembly
PO12		language programs
		Apply knowledge of mathematics, science and
EEL 331.1-	Н	engineering to develop and execute assembly language
PSO1		programs for
1.001		design commission and maintain various types of
		electrical systems
		Derive sustainable solutions to complex
EEL 221 1	ц	electrical
EEL 331.1-	п	engineering problems by the execution of assembly
PS02		language programs
		In depth engineering knowledge to design and
EEL 331.2-	Н	Implement
PO1		systems with interfacing circuits for various applications.
		Design and Implement systems with interfacing circuits
EEL 331.2-	Н	for various applications for analyzing complex
PO2		engineering problems reaching substantiated
		conclusions
FFI 331 2-	М	Design and Implement systems with interfacing circuits
PO3	111	for design solutions for complex angine mine mehleme
105		Lies research based knowledge and research methods to
	N	design and Implement systems with interfacing circuits
EEL 331.2-	M	for various applications
PO4		Tor various appreciations.
EEL 331.2-	Н	Design and Implement systems with interfacing
PO5		using modern engineering and IT tools
		Apply ethical principles and commit to professional
		ethics and responsibilities in designing and
EEL 331 2-	М	Implementing systems with interfacing circuits for
PO8	111	various applications.
		Function effectively as an individual, and as a member
		or leader in diverse teams to design and Implement
EEL 331.2-	М	interfacing circuits for various applications.
PO9		
		Communicate effectively on complex engineering
		activities by design and Implementing systems
EEL 331.2-	Н	interfacing circuits for various applications.
PO10		
		Get ability to engage in independent and life-long
		learning
EEL 331.2-	М	in designing and Implementing systems with interfacing
		circuits for various applications.

PO12		
EEL 331.2- PSO1	Н	Apply knowledge of mathematics, science and engineering to design and Implement interfacing circuits for design, commission and maintain various types of electrical systems
EEL 331.2- PSO2	Н	Derive sustainable solutions to complex electrical engineering problems by designing and Implementing interfacing circuits for various applications.
EEL 331.3- PO1	Н	In depth engineering knowledge to execute projects as a team using microprocessor/ microcontroller for real life applications.
EEL 331.3- PO2	Н	Develop and execute assembly language programs for executing projects as a team using microprocessor/ microcontroller for real life applications.
EEL 331.3- PO3	Н	Execute projects as a team for design solutions for complex engineering problems
EEL 331.3- PO4	Н	Use research-based knowledge and research methods to execute projects as a team using microprocessor/ microcontroller for real life applications.
EEL 331.3- PO5	Н	Execute projects as a team using microprocessor/ microcontroller for real life applications using modern engineering and IT tools
EEL 331.3- PO6	Н	Execute projects as a team for real life applications to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
EEL 331.3- PO7	Н	The impact of the engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development as a team.
EEL 331.3- PO8	Н	Apply ethical principles and commit to professional ethics and responsibilities in designing and Implementing projects as a team
EEL 331.3- PO9	Н	Function effectively as an individual, and as a member or leader in diverse teams to design and Implement projects as a team
EEL 331.3- PO10	Н	Communicate effectively on complex engineering activities by executing projects as a team

EEL 331.3- PO11	М	Get the understanding of the engineering and management principles and apply these to one's own work, as a member
		and leader in a team, to manage projects and in multidisciplinary environments.
EEL 331.3- PO12	М	Get ability to engage in independent and life-long learning in designing and Implementing systems with team work
EEL 331.3- PSO1	М	Apply knowledge of mathematics, science and engineering as a team to design, commission and maintain various types of electrical systems
EEL 331.3- PSO2	М	Derive sustainable solutions to complex electrical engineering problems with the help of team work for various applications.

ЕЕТ 302	LINEAR CONTROL SYSTEM	L	Т	Р	CREDIT	Year of Introduction
		2	2	0	4	2019

СО	Statement	Knowledge level
CO1	Describe the role of various control blocks and components in feedback systems.	K2
CO2	Analyse the time domain responses of the linear systems.	K4
CO3	Apply Root locus technique to assess the performance of linear systems.	К3
CO4	Analyse the stability of the given LTI systems.	K4
CO5	Analyse the frequency domain response of the given LTI systems	K4
CO6	Design compensators using time domain and frequency domain techniques.	K5

EET 306		LINEAR CONTROL SYSTEMS													
COs/P Os	Р О 1	PO2	PO3	PO4	P 0 5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PS O 1	PS 0 2	PS 0 3
CO1	3	3										1	2		1
CO2	3	3	3									2	2		1
CO3	3	3	3		2							2	2		1
CO4	3	3	3									3	2		1
CO5	3	3	3		2							3	2		1
CO6	3	3	3	2								3	2		1
Averag e	3	3	3	2	2							2.3 3	2		1

СО	Justification
CO1	Knowledge in the basic structure is required to solve problems in engineering (PO1)
	To analyse the step response of first and second order systems(PO2)
	Transfer function of a different systems is a lifelong learning process (po12)
	Knowledge in lead, lag and lead-lag compensators (PSO1)
	Transfer function approach is a life- long learning (PSO3)
CO2	Knowledge of transient and steady state analysis is required to solve engineering
	problem (PO1)
	Analyse different error coefficients of different type of control systems(PO2) To
	analyse the steady state condition of different systems(PO3)
	Stability Analysis is a life- long learning process (PO12)
	Analyse transient performance parameters of the system for standard input function
	(PSO1)
	Stability analysis is life- long learning process (PSO3)
CO3	Knowledge of Root Locus method to determine stability problems in engineering.
	(PO1)
	Analyse the effect of addition of poles and zeros on stability (PO2)
	Design the compensators (Lead, Lag and Lead-Lag) using Root Locus simulation
	tool.(PO3)
	Design the PID controller and compensators using simulation tool (PO5) Controller
	design is life-long learning(PO12)
	In-depth knowledge in the stability of a system using Root Locus(PSO1) Controller
	design is life-long learning (PSO3)

CO4	Knowledge of Linear time invariant system stability analysis to solve an
	Analyse the stability condition of a LTI system (PO2) Design the compensators of
	LTI system (PO3)
	Stability analysis of LTI system is a life- long Process (PSO3) In-depth knowledge
	L11 system is required (PSO1) Stability analysis of LTL system is a life long Process in clastrical field(PSO2)
005	Stability analysis of LTT system is a life- long Process in electrical field (PSOS)
005	Knowledge in frequency domain analysis is necessary (POI)
	Analyse the stability of a given system in frequency domain using bode/polar
	piols.(PO2) Interpret the data of hode plot or polar plot to analyze the stability of system (PO2)
	Design the bode plot using simulation tools (PO5)
	Engage in lifelong learning with respect to bode plot and polar plots (PO12).
	Acquire knowledge in the stability of a system using bode plot/polar plot(PSO1)
	Life –long learning to develop the frequency domain specifications of a given
	system(PSO3
CO5	Knowledge of designing compensators to solve the problems in electrical
	engineering (PO1)
	Analyse different compensators and controllers (PO2) Design and develop PI, PD
	and PID controllers (PO3)
	Matlab simulation analysis of the design of compensators (PO5)
	Life –long learning approach in the design and development of compensators
	(PO12) Knowledge in different stability criteria such as Nyquist, Nicholas etc., are
	required (PSO1)
	Design lead, lag and lead-lag compensators is a life-long learning (PSO3)
CO6	Knowledge of designing compensators in time domain and frequency domain is
	required to solve the problems in electrical engineering (PO1)
	Analyse different compensators in time and frequency domain(PO2)
	Design and develop lead, lag and lead-lag compensators in time and frequency
	domain (PO3)
	Analysis of the different compensators based on the stability (PO4)
	Life –long learning approach in the design and development of compensators
	(PO12) Knowledge in different stability criteria such as Root locus, Bode plot,
	Nyquist, Nichologisto, and required (DSO1)
	Nicholas etc., are required (PSUI)
	Design lead, lag and lead-lag compensators is a life-long learning (PSO3)

EET 304	POWER SYSTEM II	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

CO1	Apply the per unit scheme for any power system network and compute the fault levels.
CO2	Analyse the voltage profile of any given power system network using iterative methods.
CO3	Analyse the steady state and transient stability of power system networks.
CO4	Model the control scheme of power systems
CO5	Schedule optimal generation scheme.

# MAPPING

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	3	I	-	1	I	I	I	I	-	-	2	2	2	2
CO2	3	3	2	-	I	I	I	I	I	-	-	2	2	2	2
CO3	3	3	2	-	I	-	-	-	-	-	-	1	2	2	2
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	2	2
CO5	3	3	1	-	1	-	-	-	-	-	3	1	2	2	2

### JUSTIFICATION

CO	РО	MAPPI NG	JUSTIFICATION
	PO1	3	Knowledge of per unit systems and faults in the system is required to solve complex engineering problems
	PO2	3	Knowledge of per unit systems and faults in the system is required for adding up problem analyzing skills
	PO 12	2	Knowledge of per unit systems and faults in the system is required to equipelectrical engineers for lifelong learning
CO 1	PSO1	2	Knowledge of per unit systems and faults in the system is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of per unit systems and faults in the system is required to find solutions to complex electrical engineering

CYCLE 1 - NAAC ACCREDITATION 2023

			problems
	PSO3	2	Knowledge of per unit systems and faults in the system is required to
	1505	2	electrical engineers for lifelong learning
	PO1	3	Knowledge of analyzing the voltage profile of any given power system network is required to solve complex engineering problems
	PO2	3	Knowledge of analyzing the voltage profile of any given power systemnetwork is required for adding up problem analyzing skills
	PO3	2	Knowledge of analyzing the voltage profile of any given power system network is required to design different electrical system components
	PO 12	2	Knowledge of analyzing the voltage profile of any given power systemnetwork is required to equip electrical engineers for lifelong learning
CO 2	PSO1	2	Knowledge of analyzing the voltage profile of any given power system network is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of analyzing the voltage profile of any given power system network are required to find solutions to complex electrical engineering problems
	PSO3	2	Knowledge of analyzing the voltage profile of any given power system network is required to equip electrical engineers for lifelong learning
	PO1	3	Knowledge of analyzing the steady state and transient stability of power system networks is required to solve different operational problems inelectrical engineering
	PO2	3	Knowledge of analyzing the steady state and transient stability of power system networks is required for problem analysis in electric systems
	PO 3	2	Knowledge of analyzing the steady state and transient stability of power system networks is required to design different electrical system components
3	PO 12	1	Knowledge of analyzing the steady state and transient stability of power system networks is required to equip electrical engineers for lifelong learning
	PSO1	2	Knowledge of analyzing the steady state and transient stability of power system networks is necessary to design and maintain various systems inelectrical engineering
	PS02	2	Knowledge of analyzing the steady state and transient stability of power system networks is required to find solutions to complex electrical engineering problems
	PSO3	2	Knowledge of analyzing the steady state and transient stability of power system networks is required to equip electrical engineers for lifelong learning

	PO1	3	Knowledge of modeling the control scheme of power systems is required to solve different operational problems in electrical engineering
CO 4	PO 2	2	Knowledge of modeling the control scheme of power systems is required for problem analysis in electric systems
	PSO1	2	Knowledge of modeling the control scheme of power systems is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of modeling the control scheme of power systems is required find solutions to complex electrical engineering problems
	PSO3	2	Knowledge of modeling the control scheme of power systems is required to equip electrical engineers for lifelong learning
	PO1	3	Knowledge of scheduling the optimal generation scheme for a power system is required to solve different operational problems in electrical engineering
	PO 2	3	Knowledge of scheduling the optimal generation scheme for a power system is required for problem analysis in electric systems
	PO 3	1	Knowledge of scheduling the optimal generation scheme for a power system is required to design different electrical system components
CO 5	PO5	1	Knowledge of scheduling the optimal generation scheme for a power system is required for enabling modern tool usage for electrical engineers
	PO 11	3	Knowledge of scheduling the optimal generation scheme for a power system is required to apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
	PO12	2	Knowledge of scheduling the optimal generation scheme for a power system is required to equip electrical engineers for lifelong learning
	PSO1	2	Knowledge of scheduling the optimal generation scheme for a power system is required to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of scheduling the optimal generation scheme for a power system is required find solutions to complex electrical engineering problems
	PSO3	2	Knowledge of scheduling the optimal generation scheme for a power system is required to equip electrical engineers for lifelong learning

EET 306	POWER ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction
		3	1	0	4	2019

CO1	Explain the operation of modern power semiconductor devices and its characteristics.
CO2	
	Analyse the working of controlled rectifiers.
CO3	
	Explain the working of AC voltage controllers, inverters and PWM techniques.
CO4	
	Compare the performance of different dc-dc converters.
CO5	
	Describe basic drive schemes for ac and dc motors.

# MAPPING

EET 300	EET 306 Power Electronics														
	PO.1	PO.2	PO .3	РО .4	PO .5	PO .6	PO .7	PO .8	РО .9	PO .10	PO .11	PO .12	PSO .1	PSO .2	PSO .3
C303.1	3	1		1									1		
C303.2	3	2	1	2								2	2	1	2
C303.3	3	3											2	2	2
C303.4	3	3	2	2								2	2	2	2
C303.5	3	2										2	2	2	2

	Justification of mapping
CO1	An in-depth knowledge of electrical and electronics engineering (PO1) Apply the basic principles of mathematics and engineering sciences (PO2) Investigation on various modern semiconductor devices for various applications (PO4) Apply knowledge of science in the field of semiconductor device (PSO1)
CO2	An in-depth knowledge of electrical and electronics engineering (PO1) Analysis of controlled rectifier circuits using basic principles of mathematics and engineering sciences (PO2) Design and analysis of single phase and three phase controlled rectifier circuits having R, RL and RLE load (PO3, PO4) Ability to engage in lifelong learning of various controlled rectifier circuits (PO12)
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of controlled rectifier circuits for various applications.

3	An in-depth knowledge of electrical and electronics engineering (PO1) Analysis of AC voltage controllers and inverters using basic principles of mathematics and engineering sciences (PO2) Apply knowledge (PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of AC voltage controllers, single phase and three phase inverters for various applications.
4	An in-depth knowledge of electrical and electronics engineering (PO1) Analysis of Buck, Boost, Buck-Boost converter circuits using basic principles of mathematics and engineering sciences (PO2) Design & Analysis of Buck, Boost, Buck-Boost converter circuits in continuous conduction mode (PO3, PO4) Ability to engage in lifelong learning of different DC-DC converters for different applications (PO12) Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of different DC-DC converters for various applications
5	An in-depth knowledge of electrical engineering (PO1) Analysis of various DC and AC motor drives (PO2) Ability to engage in lifelong learning of various DC and AC motor drives (PO12) Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of motor drives for various applications.

EEL 332	POWER SYSTEMS LAB	L	Т	Р	CREDIT	Year of Introduction
		0	0	3	2	2019

СО	Course outcome	Knowledge level
EEL332.1	Develop mathematical models and conduct steady state and transient analysis of power system networks using standard software.	К3
EEL332.2	Develop a frequency domain model of power system networks and conduct the stability analysis.	К3
EEL332.3	Conduct appropriate tests for any power system component as perstandards.	K3
EEL332.4	Conduct site inspection and evaluate performance ratio of solar power plant.	К3

#### MAPPING

P O		Programme outcomes											PSO			
со	Р О 1	P O2	P O 3	P O4	P O 5	P 06	P O 7	P 08	P O 9	P 0 1 0	P 0 1 1	P 0 1 2	P S O 1	P S O 2	P S O 3	
C 01	3	3	2	3	3			3	2	3		3	2	2	2	
C O2	3	2	1	3	3			1	2	3		2	2	2	2	
C 03	3	1	1	3	3	3	1	3	3	3		3	2	2	2	
C O4	3	1	1	3	3	3	3	3	3	3	2	3	2	2	2	

со	РО	MAPPI N G	JUSTIFICATION
			Knowledge of developing mathematical models and conduct steady
<b>C</b> O	DO1	2	state and transient analysis of power system networks is required to
	POI	3	solve complex engineering problems
1			Knowledge of developing mathematical models and conduct steady
	PO2	3	state
		-	adding upproblem analyzing skills
			Knowledge of developing mathematical models and conduct steady
			state
	PO 3	2	and transient analysis of power system networks is required to design
			different electrical system components
			Knowledge of developing mathematical models and conduct steady
	PO 4	2	state
	PO 4	3	and transient analysis of power system networks is required to
			Conductinvestigations of research of complex problems
		3	state
	PO 5		and transient analysis of power system networks is required to
			familiarize with modern tool usage
			Knowledge of developing mathematical models and conduct steady
			state
		2	and transient analysis of power system networks using standards is
	PO 8	3	required to apply ethical principles and commit to professional ethics
			and responsibilities and norms of the engineering practice.
			Knowledge and practice of developing mathematical models and
	PO 9	2	stoady state and transient analysis of nower system networks makes
	107	-	the engineers to work individually and in a team
			Knowledge of developing, mathematical models and conduct steady
			state
			and transient analysis of power system networks makes the engineer
	PO 10	3	able tocomprehend and write effective reports and design
			documentation, make effective presentations, and give and receive clear
			instructions.
			Knowledge of developing mathematical models and conduct steady
	DO 12	2	state
	1012	5	and transient analysis of power system networks is required to equip
			Electrical engineers for lifelong learning
			state
	PSO1	2	and transient analysis of power system networks is required to

			design and maintain various systems in electrical
			engineering
			Knowledge of developing mathematical models and conduct steady
	DCOO	2	state
	PS02	2	and transient analysis of power system networks is required to find
			solutions to complex electrical engineering problems
			state
	PSO3	2	and transient analysis of power system networks is required to equip
			electrical engineers for lifelong learning
			Knowledge of developing a frequency domain model of power system
CO	PO1	3	networks and conducting the stability analysis is required to solve
2		-	complex engineering problems
			Knowledge of developing a frequency domain model of power system
			networks and conducting the stability analysis is required for adding up
	PO2	2	problem analyzing skills
		1	Knowledge of developing a frequency domain model of power system
	PO3	1	different
			electrical system components
			Knowledge of developing a frequency domain model of power system
		-	networks and conducting the stability analysis is required to conduct investigations or research of complex problems
	PO 4	3	
		2	Knowledge of developing a frequency domain model of power system networks and conducting the stability analysis is required to familiarize
	PO 5	3	with
			modern tool usage
			Knowledge of developing a frequency domain model of power system
			networks and conducting the stability analysis is required to apply athical principles and commit to professional othics and responsibilities
	PO 8	1	and norms of the engineering practice
			Knowledge of developing a frequency domain model of power system
	PO 9	2	networks and conducting the stability analysis makes the engineers to
			work
			Individually and in a team Knowledge of developing a frequency domain model of power system
			networks and conducting the stability analysis makes the engineer able
	PO 10	3	to comprehend and write effective reports and design documentation,
			make effective presentations, and give and receive clear instructions.
		2	Knowledge of developing a frequency domain model of power system
	PO 12	2	electrical engineers for lifelong learning
			Knowledge of developing a frequency domain model of power system
	PSO1	2	networks and conducting the stability analysis is required to design and
			maintain various systems in electrical engineering

	PS02	2	Knowledge of developing a frequency domain model of power system networks and conducting the stability analysis are required to find solutions to complex electrical engineering problems
	PSO3	2	Knowledge of developing a frequency domain model of power system networks and conducting the stability analysis is required to equip electrical engineers for lifelong learning
CO 3	PO1	3	Knowledge of testing of power system components is required to solve different operational problems in electrical engineering
	PO2	1	Knowledge of testing of power system components is required for problem analysis in electric systems
	PO 3	1	Knowledge of testing of power system components is required to design different electrical system components
	PO 4	3	Knowledge of testing of power system components is required to conduct investigations or research of complex problems
	PO 5	3	Knowledge of testing of power system components is required to familiarize with modern tool usage
	PO 6	3	Knowledge of testing of power system components to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues
	PO 7	1	Knowledge of testing of power system components is required to understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
	PO 8	3	Knowledge of testing of power system components is required to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
	PO 9	3	Testing of power system components makes the engineers to work individually and in a team
	PO 10	3	Knowledge of testing of power system components make effective presentations, and give and receive clear instructions.
	PO 12	3	Knowledge of testing of power system components is required to equip electrical engineers for lifelong learning
	PSO1	2	Knowledge of testing of power system components is necessary to design and maintain various systems in electrical engineering
	PS02	2	Knowledge of testing of power system components is required to find solutions to complex electrical engineering problems

		2	Knowledge of testing of power system components is required to equip
	PSO3		electrical engineers for lifelong learning
<u> </u>			Knowledge of conducting site inspection and evaluating performance ratio of solar power plant is required to solve different operational
CO		2	problems in solar plant installation
4	POI	3	
			Knowledge of conducting site inspection and evaluating performance
	PO 2	1	of solar power plant is required for problem analysis in solar power
			systems
			Knowledge of conducting site inspection and evaluating performance
	PO 3	1	ratio of solar power plant is required to design different solarl system
			components
			Knowledge of conducting site inspection and evaluating performance
	PO 4	3	ratio
			of solar power plant is required to conduct investigations or research of
			complex problems in solar power system
		_	Knowledge of conducting site inspection and evaluating performance
	PO 5	3	of solar power plant is required to familiarize with modern tool usage
			in solar installations
			Knowledge of conducting site inspection and evaluating performance
		3	ratio
	PO 6		of solar power plant is required to apply reasoning informed by the
			contextual knowledge to assess societal, health, safety, legal and
			cultural issues
			Knowledge of conducting site inspection and evaluating performance
			ratio of solar power plant is required to understand the impact of the
	PO 7	3	professional engineering solutions in societal and environmental
			contexts, and demonstrate the knowledge of, and need for sustainable
			development.
			Knowledge of conducting site inspection and evaluating performance
			ratio
	PO 8	3	of solar power plant is required to apply ethical principles and commit
			to professional ethics and responsibilities and norms of the engineering
			Fractice.
		2	ratio
	109	5	of solar power plant makes the engineers to work individually and in a
			team
	PO 10		Knowledge of conducting site inspection and evaluating performance
		3	ratio
			of solar power plant makes the engineer able to comprehend and write
			effective reports and design documentation, make effective
			Knowledge of conducting site inspection and evaluating performance.
			ratio of solar power plant is required to apply these to one's own work
	PO 11	2	as a
		<u> </u>	member and leader in a team, to manage projects and in

Γ			multidisciplinary environments.
			Knowledge of conducting site inspection and evaluating performance
Р	PO 12	3	ratio
			of solar power plant is required to equip electrical engineers for
			lifelong learning
			Knowledge of conducting site inspection and evaluating performance
Р	PSO1	2	ratio
1			of solar power plant is required to design and maintain various systems
			in electrical engineering
			Knowledge of conducting site inspection and evaluating performance
Р	PS02	2	ratio
	~ ~ ~		of solar power plant to complex electrical engineering problems
	PSO3	2	Knowledge of conducting site inspection and evaluating performance
Р			ratio of solar power plant is required to equip electrical engineers for
Ĺ		_	lifelong learning

EEL 334	POWER ELECTRONICS	L	Т	Р	CREDIT	Year of Introduction		
	LAB	0	0	3	2	2019		

СО	Course outcome	Knowledge level
CO1	Determine the characteristics of SCR and design triggering circuits for SCR based circuits.	K3
CO2	Design, set up and analyse single phase AC voltage controllers.	K3
CO3	Design, set up and test suitable gate drives for MOSFET/IGBT.	K3
CO4	Design, set up and test basic inverter topologies	K3
CO5	Design and set up dc-dc converters.	
CO6	Develop simulation models of dc-dc converters, rectifiers and inverters using modern simulation tools.	

COs/P Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O 1	PS O 2	PS 0 3
CO1	3	3	2	2					3	2		3	1	1	1
CO2	3	3	2	2					3	2		3	2	2	2
CO3	3	3	2	2					3	2		3	2	2	2
CO4	3	3	2	2					3	2		3	2	2	2
CO5	3	3	2	2					3	2		3	2	2	3
CO6	3	3	2	2	3				3	2		3	3	3	3
Averag e	3	3	2	2	3				3	2		3	2	2	2

### JUSTIFICATION

An in-depth knowledge of electrical and electronics engineering (PO1) Apply the basic principles of mathematics and engineering sciences (PO2) Design and develop different triggering circuits for various applications (PO3, PO4) Able to work as a team for designing various circuits using power electronic devices and related ICs (PO9) CO1 To communicate effectively on complex engineering activities with the engineering community and with society by doing course project related to power electronics applications and thereby able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (PO10) Able to engage in lifelong learning of power electronic devices and circuits (PO12) Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of various triggering circuits such as R,RC,UJT and TRIAC circuits for various applications.

	An in-depth knowledge of electrical and electronics engineering (PO1)
	Apply the basic principles of mathematics and engineering sciences (PO2)
CO2	Design and develop AC voltage controller circuits for various applications (PO3, PO4)
02	Able to work as a team for designing various power electronic circuits (PO9)
	Communicate effectively on complex engineering activities with the engineering community and with society by doing course project related to power electronics applications and thereby able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (PO10) Able to engage in lifelong learning of power electronic devices and circuits (PO12) Apply knowledge (PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of AC voltage controller circuits for various applications

ronics engineering (PO1)
l engineering sciences (PO2)
IGBT for various applications (PO3,
rious power electronic circuits (PO9)
neering activities with the engineering project related to power electronics and write effective reports and design and give and receive clear instructions electronic devices and circuits (PO12)
SO2) and empower students for lifelong GBT circuits for various applications
electronic devices and circuits (PO SO2) and empower students for lif GBT circuits for various applicati
-----
CO4

	An in-depth knowledge of electrical and electronics engineering (PO1)
	Apply the basic principles of mathematics and engineering sciences (PO2)
CO5	Design and develop DC-DC converters for various applications in the field of technology (PO3) Able to design experiments on power electronic applications by using appropriate power electronics converters .(PO4) Able to work as a team for designing various DC-DC converters for various applications (PO9) Communicate effectively on complex engineering activities with the engineering community and with society by doing course project related to power electronics applications and thereby able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (PO10) Able to engage in lifelong learning on various DC-DC power electronics converters (PO12) Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of various Buck,Boost and Buck-Boost Converters for various applications(PSO2)

	An in-depth knowledge of electrical and electronics engineering (PO1)
	Apply the basic principles of mathematics and engineering sciences (PO2)
	Design and develop power electronic circuits for various applications in the field of technology (PO3)
	Able to design experiments on power electronic applications by using appropriate power electronics converters in MATLAB/ Simulink (PO4)
	Able to identify and select DC-DC converters, rectifiers, inverters for various applications using MATLAB/ Simulink (PO5)
	Able to work as a team to design different power electronics converters for various power electronics applications in MATLAB/ Simulink (PO9)
	To communicate effectively on complex engineering activities with the engineering
CO6	community and with society by doing course project related to power electronics
	applications and thereby able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
	(PO10)
	Able to engage in lifelong learning of designing different power electronics
	converters in MATLAB/ Simulink for various power electronics applications (PO12) Apply knowledge (PSO1), derive solutions (PSO2) and empower students for lifelong
	learning (PSO3) of various power electronics converters in MATLAB/ Simulink for various power electronics applications

HUT 300	Industrial Economics &	L	Т	Р	CREDIT	Year of Introduction
	Foreign Trade	3	0	0	3	2019

CO 1	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate
	the impact of government policies on the general economic welfare.
CO 2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production
CO 3	Determine the functional requirement of a firm under various competitive conditions
<b>CO 4</b>	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society

CO 5	Determine the impact of changes in global economic policies on the business	
005	opportunities of a firm	

# MAPPING

	Р	PO	PO	PO	РО	РО	РО	РО	PO	РО	РО	PO	PSO	PSO	PSO
	0 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO 2	2	2	-	-	2	2	3	-	-	-	3	-	1	-	-
CO 3	2	2	1	-	-	-	-	-	-	-	3	-	1	-	-
CO 4	2	2	1	-	-	1	-	-	-	-	3	-	1	-	-
CO 5	2	2	1	-		-	-	-	-	-	3	-	1	-	-
AVER AGE	2	2	1	-	2					-	3	-	1	-	-

CO	РО	LEVEL	REMARKS
	PO 1	2	By understanding the Scarcity and choice – Basic economic problems - PPC
	PO11	3	By understanding the changes in demand and supply and itseffects student will be able to engage in continuous learning.
1	PSO1	1	By understanding the basic concepts and demand, supply analysis, the students will be able to Apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.
	PO 1	2	By understanding the Production function and law of variable proportion.
	PO 2	2	By understanding the Economies of scale – internal and external economies of scale.

CO 2	PO5	2	By understanding the Cost concepts, students will be able to communicate on complex engineering activities with the engineering community and with the society.						
	PO6	2	By understanding the Short run cost curves & Long run cost curves.						
	PO7	3	By analyzing the Revenue (concepts) – shutdown point – Break- even points students will be able to engage in continuous learning						
	PO11	3	By analyzing the production and cost student will be able to engag in continuous learning.						
	PSO1	1	By understanding the production and cost, the students will be able to Apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.						
	PO 1	2	By analyzing the market structure, types and product pricing, the student will be able to apply the knowledge to find solution of complex engineering problems.						
CO	PO 2	2	By analyzing market structure, types and product pricing, the student will be able to identify, analyze and make conclusions of simple engineering problems.						
3	PO 3	1	By analyzing market structure, types and product pricing,, the student will be able to design solutions for simple engineering problems.						
	PO 11	3	By analyzing market structure, types and product pricing, the student will be able to conduct investigations of complex problems and provide valid conclusions.						
	PSO1	1	By analysing, market structure,types and product pricing the student will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and addresschallenges in the field						
	PO 1	2	By understanding the macro economic concepts, Inflation and business financing, the student will be able to apply the knowledge on complex engineering problems.						

CO 4	PO 2	2	By understanding the macro economic concepts, Inflationand business financing, the student will be able to identifyformulate and analyze simple engineering problems.
	PO 3	1	By understanding the macro economic concepts, Inflation and business financing, the student will be able to engagein continuous learning,.
	PO6	1	By understanding the macro economic concepts, Inflation and business financing, the student will be able to engagein continuous learning.
	PO 11	3	By understanding the macro economic concepts, Inflation and business financing the student will be able to conduct investigations of complex problems and provide valid conclusions.
	PSO1	1	By understanding the macro economic concepts, Inflation and business financing, the student will be able to apply knowledge of mathematics, science and engineering to design commission and maintain various type of electrical systems and address challenges in the field
	PO 1	2	By understanding international trade, trade policy and tariff and non-tariff barriers the students will be able to apply the knowledge on complex engineering problems
CO 5	PO 2	2	By understanding international trade, trade policy and tariffand non-tariff barriers the student will be able to identify formulate and analyze simple engineering problems.
	PO 3	1	By understanding international trade, trade policy and tariffand non-tariff barriers the student will be able to design solutions for simple engineering problems.
	PO 11	3	By understanding international trade, trade policy and tariff and non-tariff barriers, the student will be able to conduct investigations of complex problems and provide valid conclusions.
	PSO 1	1	By understanding international trade, trade policy and tariff and non-tariff barriers the students will be able to apply knowledge of mathematics ,science and engineering to design commission and maintain various type of electrical systems and address challenges in the field.

EET 312	BIOMEDICAL INSTRUMEN	L	Т	Р	CREDIT	Year of Introduction
	TATION	2	1	0	3	2019

СО	Course outcome	Knowledge level
CO1	Explain the anatomy and physiology of human body, bioelectric potentials and electrodes.	K2
CO2	Explain different techniques for the measurement of various physiological parameters.	K2
CO3	Summarize the working of Electroencephalogram (EEG) and Electromyogram (EMG).	K2
CO4	Explain the working of various modern imaging systems and therapeutic equipments used in biomedical field	K2
CO5	Discuss the patient safety measures and recent advancements in medical field	K2

СО	Р О 1	P 0 2	P 0 3	PO 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1	P 0 1 2	P S O 1	P S O 2	P S O 3
EET31 2. 1	2	-	-	-	-	1	-	-	_	-	-	-	1	-	-
EET31 2. 2	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-
EET31 2. 3	2	-	-	-	-	-	-	-	-	-	-	-	1	-	-
EET31 2. 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EET31 2. 5	2	2	2	-	-	1	-	-	-	-	-	2	2	2	-
Avera ge	2	2	2	-	-	1	-	-	-	-	-	2	2	2	-

	LEVEL							
CO-PO-		JUSTIFICA						
PSO		TION						
EET312.1-PO1	2	Apply the knowledge of science and engineering fundamentals to identify biopotential and electrodes						
EET312.1-PO6	1	Solve real world problems by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities						
EET312.1- PSO1	1	Model and solve real world problems related to human body andhealth sector						
EET312.2-PO1	2	In-depth knowledge to identify different techniques for the measurement of various physiological parameters						
EET312.2-PO3	2	Develop products, processes or technologies for themeasurement of various physiological parameters						
EET312.3-PO1	2	In-depth knowledge in various modern imaging systems used in biomedical field						
EET312.3- PSO1	1	Identify and solve real world problems related to human body by the use of modern biomedical instruments						
EET312.4-PO1	2	In-depth knowledge in various modern imaging systems used in biomedical field						
EET312.5-PO1	2	Apply the knowledge of science and engineering fundamentals to identify patient safety measures and recent advancements in medical field						
EET312.5-PO2	2	Analyze various patient safety measures and recent advancements in medical field						
EET312.5-PO3	2	Design and develop new patient safety measures in medical field						
EET312.5-P06	1	Solve medical field problems by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities						
EET312.5-P012	2	Engage in independent and life-long learning by recent advancements in medical field						
EET312.5-PSO1	2	Maintain patient safety measures in the design, commission of various types of electrical systems in medical field						
EET312.5-PSO2	2	Develop sustainable solutions to complex electrical engineering problems in patient safety measures in hospitals.						

ЕЕТ 308	COMPREHEN SIVE	L	Т	Р	CREDIT	Year of Introduction
	COURSE WORK	1	0	0	1	2019

СО	Course outcome	Knowledge level
EET308. 1	Apply the knowledge of circuit theorems to solve the problems in electrical networks	К3
EET308. 2	Evaluate the performance of DC machines and Transformers under different loading conditions	К3
EET308. 3	Identify appropriate digital components to realise any combinational or sequential logic.	К3
EET308. 4	Apply the knowledge of Power generation, transmission and distribution to select appropriate components for power system operation.	K3
EET308. 5	Apply appropriate mathematical concepts to analyse continuous time and discrete time signals and systems	К3

Р		Programme									PSO				
0						outco	mes								
	Р	PO	Р	PO	Р	PO	Р	PO	Р	Р	Р	Р	PS	PS	PS
CO	01	2	03	4	05	6	07	8	09	0	0	0	0	0	0
										1 0	1 1	1 2	1	2	3
C0 1	3	3	-	-	-	-	-	-	-	-	-	2	2	2	1
CO 2	3	2	-	-	-	-	-	-	-	-	-	2	2	2	2
CO 3	3	3	1	-	1	-	-	-	-	-	-	2	1	1	-
CO 4	3	3	-	-	-	1	1	1	-	-	1	2	2	2	2
CO 5	3	3	1	-	1	-	-	-	-	-	-	2	2	2	1

	LEVEL	
CO-PO- PSO		JUSTIFICATIO N
CO1-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while applying the knowledgeof circuit theorems to solve the problems in electrical networks.
CO1-PO2	3	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with circuit theorems to solve the problems in electrical networks
CO1-PO12	2	Get lifelong learning while applying the knowledge of circuit theorems to solve the problems in electrical networks
CO1-PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field while applying the knowledge of circuit theorems to solve the problems in electrical networks
CO1-PSO2	2	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in connection with circuit theorems to solve the problems in electrical networks
CO1-PSO3	1	Students will be able to lifelong learning so as to adapt to dynamic changes in Electrical Engineering in connection with circ
CO2-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of different types of DC machines and Transformers under different loading conditions.
CO2-PO2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences to study the performance of different types of DC machines and Transformers under different loading conditions.
CO2- PO12	2	Get lifelong learning while studying the performance of different types of DC machines and Transformers under different loading conditions.

CO2- PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field while studying the performance of different types of DC machines and Transformers
CO2- PSO2	2	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in connection with DC machines and Transformers under different loading conditions.
CO2- PSO3	2	Students will be able to lifelong learning so as to adapt to dynamic changes in Electrical Engineering in connection with studying the performance of different types of DC machines and Transformers
CO3-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while Identify appropriate digital components to realise any combinational or sequential logic.
CO3-PO2	3	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with Identification of appropriate digital components to realise any combinational or sequential logic
CO3-PO3	1	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations while studying combinational or sequential digital logic circuits
CO3-PO5	1	Students will be able to create, select, and apply appropriate techniques, resources, and modern engineering and IT tools to Identify appropriate digital components to realise any combinational or sequential logic
CO3-P012	2	Students will be able to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in combinational or sequential digital logic circuits
CO3-PSO1	1	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field to Identify appropriate digital components to realise any combinational or sequential logic

		Students will be able to derive sustainable solutions to complex
		electrical engineering problems that meet the specified needs
CO3-PSO2	1	with ethical social and environmental considerations in
005-1502	1	connection with Identification of appropriate digital components
		to realise any combinational or sequential logic
		Students will be able to apply the knowledge of mathematics,
CO4-PO1	3	science, Engineering fundamentals while studying Power
	5	generation, transmission and distribution to select appropriate
		components for power system operation.
		Students will be able to analyze complex engineering problems
CO4-PO2	3	using first principles of mathematics, natural sciences, and
		Engineering sciences in connection with Electric Power
		generation, transmission and distribution.
		Students will be able to apply reasoning informed by the
		contextual
CO4-PO6	1	knowledge to assess societal, health, safety, legal and cultural
		issues and the consequent responsibilities relevant to the
		professional engineering practice in connection with Electric
		Power generation, transmission and distribution.
004 007		Students will be able to understand the impact of the
CO4-PO7	1	professional engineering solutions in societal and
		environmental contexts, and demonstrate the knowledge of and need for
		sustainable
		development in Electric Power generation, transmission and
		distribution.
		Students will be able to apply ethical principles and commit to
CO4-PO8	1	professional ethics and responsibilities and norms of the
		engineering practice in Electric Power generation,
		transmission and distribution.
		Students will be able to demonstrate knowledge
		allu understanding of the angineering and management principles
CO4-PO11	1	and apply these to one 's own work as a member and leader in
		a team to manage projects and in multidisciplinary
		environments in connection with Electric Power generation
		transmission and distribution
		Students will be able to recognize the need for, and have
CO4-P012	2	the
0041012	<i>2</i>	preparation and ability to engage in independent and life-long
		learning in Electric Power generation, transmission and
		distribution.
		Students will be able to apply knowledge of mathematics,
CO4-PSO1	2	science
		and engineering to design, commission and maintain various
		types of electrical systems and address challenges in the field in
		Electric Power generation, transmission and distribution.

CO4-PSO2	2	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in connection withElectric Power generation, transmission and distribution to select appropriate components for power system operation
CO4-PSO3	2	Students will be able to lifelong learning so as to adapt to dynamic changes in Electrical Engineering in Electric Power generation, transmission and distribution to select appropriate components for power system operation
CO5-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals to apply appropriatemathematical concepts to analyse continuous time and discrete time signals and systems
CO5-PO2	3	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences to apply appropriate mathematical concepts to analyse continuous time and discrete time signals and systems
CO5-PO3	1	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations to apply appropriate mathematical concepts to analyse continuous time and discrete time signals and systems
CO5-PO5	1	Students will be able to create, select, and apply appropriate techniques, resources, and modern engineering and IT tools to solve and analyse continuous time and discrete time signals and systems
CO5-P012	2	Get lifelong learning while studying the continuous time and discrete time signals and systems
CO5-PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field in connection with continuous time and discrete time signals and systems
CO5-PSO2	2	Students will be able to derive sustainable solutions to complexelectrical engineering problems that meet the specified needs with ethical, social and environmental considerations in connection with continuous time and discrete time signals and systems

CO5-PSO3	1	Students will be able to lifelong learning so as to adapt to dynamic changes in Electrical Engineering in continuous time and
		discrete time signals and systems

7							
	ЕЕТ 401	ADVANCED CONTROL	L	Т	Р	CREDIT	Year of Introduction
		THEORY	2	1	0	3	2019

CO1	Develop the state variable representation of physical systems						
CO2	Analyze the performance of linear and nonlinear systems using state variable approach						
CO3	Design state feedback controller for a given system						
<b>CO4</b>	Explain the characteristics of nonlinear systems						
CO5	Apply the tools like describing function approach or phase plane approach for assessing						
	the performance of nonlinear systems						
CO6	Apply Lyapunov method for the stability analysis of physical systems						

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	<b>PO</b> 8	PO 9	PO1 0	PO1 1	<b>PO1</b> 2	Pso 1	PSO 2	PSO 3
C 0 1	3	3										2	2		
CO 2	3	3	2									2	2		
C O 3	3	3	3									2	2		
CO 4	3	2										2	2		
C O 5	3	3	2									2	2		
CO 6	3	3	2									2	2		

Mapping	Mapping	Justifications
	level	
	(3/2/1)	
CO1 - PO1	3	State variables is essential in knowledge of control system engineering
CO1 - PO2	3	State variables is essential in solving fundamental control system
CO1 - PO12	2	Fundamental understanding of state variables is essential in gaining further knowledge in the domain
CO1 -	2	State variables is essential in knowledge of complex electrical engineering
PSO 1		
CO2 - PO1	3	Analysis of linear and nonlinear systems is essential in knowledge of control system engineering
CO2 - PO2	3	Analysis of linear and nonlinear systems is essential in solving fundamental control system problems
CO2 - PO3	2	Analysis of linear and nonlinear systems is essential in design and solving fundamental control system problems
CO2 - PO1 2	2	Fundamental understanding of Analysis of linear and nonlinear systems is essential in gaining further knowledge in the domain
CO2 - PSO1	2	Analysis of linear and nonlinear systems is essential in knowledge of complex electrical engineering
CO3 - PO1	3	Controlability and Observability is essential in knowledge of control system engineering
CO3 - PO2	3	Controlability and Observability is essential in solving fundamental control system problems
CO3 - PO3	3	Controlability and Observability is essential in design and solving fundamental control system problems
CO3 - PO1 2	2	Controlability and Observability is essential in gaining further knowledge in the domain
CO3 - PSO1	2	Controlability and Observability is essential in knowledge of complex electrical engineering
CO4 - PO1	3	Characterestics of nonlinear systems is essential in knowledge of control system engineering
CO4 - PO2	2	Characterestics of nonlinear systems is essential in solving fundamental control system problems

CO4 - PO12	2	Characterestics of nonlinear systems is essential in gaining further knowledge in the domain
CO4 -	2	Characterestics of nonlinear systems is essential in knowledge of
PSO1		complex
		electrical engineering
CO5 -	3	Analysis of nonlinear systems is essential in knowledge of control
PO1		system engineering
CO5 -	3	Analysis of nonlinear systems is essential in solving fundamental
PO2		control
		system problems
CO5 -	2	Analysis of nonlinear systems is essential in design and solving
PO3		fundamental control system problems
CO5 -	2	Fundamental understanding of Analysis of nonlinear systems is
PO12		essential in gaining further knowledge in the domain
CO5 -	2	Analysis of nonlinear systems is essential in knowledge of complex
PSO1		electrical engineering
CO6 -	3	Stability analysis of physical systems is essential in knowledge of
PO1		control system engineering
CO6 -	3	Stability analysis of physical systems is essential in solving
PO2		fundamental
		control system problems
CO6 -	2	Stability analysis of physical systems is essential in design and
PO3		solving
		fundamental control system problems
CO6 -	2	Stability analysis of physical systems is essential in gaining further
PO12		knowledge in the domain
CO6 -	2	Stability analysis of physical systems is essential in knowledge of
PSO1		complex
		electrical engineering

MCN 401	INDUSTRIAL SAFETY	L	Т	Р	CREDIT	Year of Introduction
	ENGINEERI NG	2	1	0	-	2019

CO 1	Describe the theories of accident causation and preventive measures of industrial accidents. (Cognitive Knowledge level: Understand)	К 2
CO 2	Explain about personal protective equipment, its selection, safety performance & indicators and importance of housekeeping. (Cognitive Knowledge level: Understand)	К 2
CO 3	Explain different issues in construction industries. (Cognitive Knowledge level: Understand)	K 2
CO 4	Describe various hazards associated with different machines and mechanical material handling. (Cognitive Knowledge level: Understand)	K 2
CO 5	Utilise different hazard identification tools in different industries with the knowledge of different types of chemical hazards. (Cognitive Knowledge level: Apply)	K 3

MC N 401	INDUSTRIAL SAFETY ENGINEERING														
COs/P Os	PO1	P 0 2	P 0 3	P 0 4	Р О 5	PO6	PO7	PO8	PO9	PO1 0	PO 11	PO 12	PS O 1	PS 0 2	PS O 3
CO1	2	2	-	-	-	2	2	2	-	-	-	1	2	2	1
CO2	2	1	2	-	1	1	1	1	-	-	-	1	2	2	1
CO3	2	2	2	-	1	1	1	1	1	1	-	1	2	2	1
CO4	2	2	2	-	1	1	1	1	1	1	-	1	2	2	1
CO5	2	2	2	1	1	1	1	1	1	1	-	1	2	2	1
Average	2	1.8	2	1	1	1.2	1.2	1.2	1	1	-	1	2	2	1

СО	PO/PS O	Level	Justification						
CO1	PO1	2	Knowledge of accident causation theories and preventive measures is required to safely conduct all activities such as problem solving in engineering						
	PO2	2	Knowledge of accident causation theories and preventive measures is required to conduct all engineering activities involving identifying and analysing a system						
	PO6	2	Knowledge of accident causation theories and preventive measures is required to assess societal health and safety issues and provide engineering solutions						
	PO7	2	Knowledge of accident causation theories and preventive measures is required to provide a safe and sustainable environment						
	PO8	2	Knowledge of accident causation theories and following safety measures is required as part of work ethics						
	PO12	1	Safety is inevitable in a work environment and is a lifelong learning process						
	PSO1	2	Knowledge of accident causation theories and preventive measures is required to design and maintain electrical engineering systems with due consideration for safety						
	PSO2	2	Knowledge of accident causation theories and preventive measures is required to derive safe and sustainable solutions to electrical engineering problems						
	PSO3	1	Safety is inevitable in a work environment and involves lifelong learning						
CO2	PO1	2	Knowledge of various PPEs, safety performance indicators and importance of housekeeping is required to safely conduct all engineering problem						
	PO2	1	Knowledge of various PPEs, safety performance indicators and importance of housekeeping will help in safely conducting engineering activities involving identifying and analysing a system						
	PO3	2	Knowledge of safety performance indicators and importance of housekeeping are all required while designing an engineering system						
	PO5	1	Knowledge of various PPEs, safety performance indicators and importance of housekeeping will help in selecting and using modern safety tools						
	PO6	1	Knowledge of various safety performance indicators will help in assessing societal health and safety issues and provide engineering solutions						
	PO7	1	Knowledge of various PPEs, safety performance indicators and importance of housekeeping will help in providing a safe and						

			sustainable environment
	PO8	1	Knowledge of various PPEs, safety performance indicators and importance of housekeeping will help in inculcating work ethics
	PO12	1	Safety is inevitable in a work environment and is a lifelong learning process
	PSO1	2	Knowledge of various PPEs, safety performance indicators and importance of housekeeping is required to design and maintain an electrical engineering system with due consideration for safety
	PSO2	2	Knowledge of various PPEs, safety performance indicators and importance of housekeeping is required to derive safe and sustainable solutions to electrical engineering problems
	PSO3	1	Safety is inevitable in a work environment and involves lifelong learning
CO3	PO1	2	Knowledge of different safety issues in construction industry is required to safely conduct all engineering activities such as problem solving
	PO2	2	Knowledge of different safety issues in construction industry is required to safely conduct all engineering activities involving identifying and analysing a system or process
	PO3	2	Knowledge of different safety issues in construction industry is required to design an engineering process or system with due consideration for safety
	PO5	1	Knowledge of different safety issues in construction industry will help in selecting and using modern safety tools and equipment
	PO6	1	Knowledge of different safety issues in construction industry will help in assessing the societal health and safety issues and provide solutions to it
	PO7	1	Knowledge of different safety issues in construction industry and following preventive measures will help in providing a safe and sustainable environment
	PO8	1	Knowledge of different safety issues in construction industry and following their control measures will help in inculcating work ethics in construction workers
	PO9	1	Knowledge of different safety issues in construction industry will help workers to work better individually as well as in a team
	PO10	1	Communication of safety issues and the control measures will help in providing a safe environment at the work place
	PO12	1	Safety is inevitable in a work environment and is a lifelong learning process
	PSO1	2	Knowledge of different safety issues in construction industry is required to design and maintain electrical equipment in construction industry with due consideration for safety
	PSO2	2	Knowledge of different safety issues in construction industry is required to derive safe and sustainable solutions to electrical engineering problems in construction processes
	PSO3	1	Safety is inevitable in a work environment and involves lifelong learning

CO4	PO1	2	Knowledge of safety hazards in general machines and material handling machines is required to safely solve an engineering problem
	PO2	2	Knowledge of safety hazards in general machines and material handling machines is required to safely analyse an engineering problem
	PO3	2	Knowledge of safety hazards in general machines and material handling machines is required to design an engineering system with due consideration for safety
	PO5	1	Knowledge of safety hazards in general machines and material handling machines will help in selecting and using modern safety tools
	PO6	1	Knowledge of safety hazards in general machines and material handling machines will help in assessing the societal health and safety issues and provide solutions to it
	PO7	1	Knowledge of safety hazards in general machines and material handling machines will help in providing a safe and sustainable environment
	PO8	1	Knowledge of safety hazards in general machines, material handling machines and following their control measures will help in inculcating work ethics in workers
-	PO9	1	Knowledge of safety hazards in general machines and material handling machines will help workers to work better individually as well as in a team
	PO10	1	Communication of safety issues and control measures will help provide a safe environment at the work place
	PO12	1	Safety is inevitable in a work environment and is a lifelong process
	PSO1	2	Knowledge of safety hazards in general machines and material handling machines is required to design and maintain electrical engineering systems with due consideration for safety
	PSO2	2	Knowledge of safety hazards in general machines and material handling machines is required to derive safe and sustainable solutions in electrical material handling equipment and other machines
	PSO3	1	Safety is inevitable in a work environment and involves lifelong learning
CO5	PO1	2	Knowledge of hazards identification tools and various chemical hazards is required to safely conduct all engineering activities such as problem solving especially in a chemical industry
	PO2	2	Knowledge of hazards identification tools and various chemical hazards is required to safely conduct all engineering activities such as identifying and analysing an engineering problem
	PO3	2	Knowledge of hazards identification tools and various chemical hazards is required to safely design an engineering process or system
	PO4	1	Knowledge of hazards identification tools and various chemical hazards will help in investigating a hazardous process for its safety issues
	PO5	1	Knowledge of hazards identification tools and various chemical hazards will help in selecting and using modern safety tools

PO6	1	Knowledge of hazards identification tools and various chemical hazards will help in assessing the societal health and safety issues and provide solutions to it
PO7	1	Knowledge of hazards identification tools and various chemical hazards will help in providing a safe and sustainable environment
PO8	1	Knowledge of hazards identification tools, various chemical hazards and following their control measures will help in inculcating work ethics in workers
PO9	1	Knowledge of hazards identification tools and various chemical hazards will help workers to work individually as well as in a team
PO10	1	Communication of safety issues and control measures will help provide a safe environment at the work place
PO12	1	Safety is inevitable in a work environment and involves lifelong learning
PSO1	2	Knowledge of hazards identification tools and various chemical hazards is required to identify hazards in designing, commissioning and maintaining an electrical engineering system
PSO2	2	Knowledge of hazards identification tools and various chemical hazards is required to derive safe and sustainable solutions to hazardous electrical engineering processes that may or may not involve chemicals
PSO3	1	Safety is inevitable in a work environment and involves lifelong learning

EET 473	DIGITAL PROTECTIO	L	Т	Р	CREDIT	Year of Introduction
	N OF POWER SYSTEMS	2	1	0	3	2019

СО	Course outcome	Knowledge level
EET473. 1	Identify the relay protection scheme suitable for over current, differential and distance protection.	K2
EET473. 2	Develop the protection scheme for bus bars, transformers, generators, motors and distribution systems using appropriate protective relays.	K3
EET473. 3	Illustrate the operation of a numerical relay in his/her own way.	K2
EET473. 4	Explain signal processing methods and algorithms in digital protection.	K2
EET473. 5	Infer emerging protection schemes in power systems.	K2

PO				PSO											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P O 10	P 0 11	P 0 12	PS O 1	PS O 2	PS 0 3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	1	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-	1	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	1	-	-
CO5	3	3	-	2	_	-	-	-	-	-	-	-	-	-	-
AV G	3	2	3	2	-	-	-	-	-	-	-	-	1	-	-

CO-PO-PSO	LEVEL (Low/Moderat	JUSTIFICA									
	e/Hign)	IION In depth engineering knowledge to develop									
EET 473.1- PO1	Н	protection scheme suitable for over current, differential and distance protection.									
EET 473.1- PO2	М	Analyze relay protection scheme suitable for over current, differential and distance protection.									
EET 473.1- PSO1	L	Develop relay protection scheme suitable for over current, differential and distance protection to design, commission and maintain various types of electrical systems									
EET 473.2- PO1	Н	In depth engineering knowledge to develop the protection scheme for bus bars, transformers, generators, motors and distribution systems									
EET 473.2- PO2	Н	Analyze the protection scheme for bus bars, transformers, generators, motors and distribution systems									
EET 473.2- PO3	Н	Develop the solution for the the protection scheme for bus bars, transformers, generators, motors and distribution systems									
EET 473.2- PSO1	L	Develop the protection scheme for bus bars, transformers, generators, motors and distribution systems to design, commission and maintain various types of electrical systems									
EET 473.3- PO1	Н	In depthknowledtoperatioengineeringgehonfnumerical relayeef									
EET 473.3- PO2	М	Analyze the operation of a numerical relay									
EET 473.3- PO3	Н	Develop solution operation of a numerical relay									
EET 473.3- PSO1	L	Derive sustainable solutions to the operation of a numerical relay									
EET 473.4- PO1	Н	In depth engineering knowledge to develop the signal processing methods and algorithms in digital protection.									
EET 473.4- PO2	М	Analyze signal processing methods and algorithms in digital protection.									

EET 473.4- PO3	Н	Develop the solution for signal processing methods and algorithms in digital protection.
EET 473.4- PSO1	L	Develop the solution for signal processing methods and algorithms in digital protection to design, commission andmaintain various types of electrical systems
EET 473.5- PO1	Н	In depth knowledge in protection schemes in power systems
EET 473.5- PO2	Н	Analyze new protection schemes in power systems
EET 473.5- PO4	М	Study the protection schemes in power systems to design, commission and maintain various types of electrical systems

EEQ 413	SEMINAR	L	Т	Р	CREDIT	Year of Introduction
		0	0	3	2	2019

СО	Course outcome	Knowledge level
EEQ413.1	Identify academic documents from the literature which are related to her/his areas of interest (Cognitive knowledge level: Apply).	K3
EEQ413.2	Read and apprehend an academic document from the literature which is related to her/ his areas of interest (Cognitive knowledge level: Analyze).	K4
EEQ413.3	Prepare a presentation about an academic document (Cognitive knowledge level: Create).	K6
EEQ413.4	Give a presentation about an academic document (Cognitive knowledge level: Apply).	K3
EEQ413.5	Prepare a technical report (Cognitive knowledge level: Create).	K6

### MAPPING

СО	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS 0 3	
EEQ413. 1	2	2	1	1		2	1					3			2	
EEQ413. 2	3	3	2	3		2	1					3			2	
EEQ413. 3	3	2			3			1		2		3			2	
EEQ413. 4	3				2			1		3		3			2	
EEQ413. 5	3	3	3	3	2	2		2		3		3			2	
Average	2.8	2	1.2	1.4	1.4	1.2	0.4	0.8		1.6		3			2	

СО	PO/ PSO	Map ping	Justification
	PO1	2	Students will be able to apply the knowledge to identify academic documents from the literature.
	PO2	2	Students will be able to analyse the academic documents by using principles of mathematics, natural sciences, and engineering sciences.
	PO3	1	Students will be able to design system components based on the academic documents available in the literature.
	PO4	1	Students will be able to provide valid conclusions regarding complex engineering based problems by the literature survey.
EEQ413. 1	PO6	2	Students will be able to apply reasoning based on the academic documents to assess societal issues and the consequent responsibilities relevant to the professional engineering practice.
	PO7	1	Students will be able to understand the impact of the engineering solutions in societal and environmental contexts for sustainable development.
	PO1 2	3	Students will be able to have lifelong learning with technological changes in improvement by referring various academic

			documents.
			Students will be able to have lifelong learning with the help of
	PSO 3	2	academic documents available in literature so as to adapt to
	5		dynamic changes electrical engineering.
	PO1	3	Students will be able to apply the knowledge to apprehend an academic document from the literature.
	PO2	3	Students will be able to analyse the academic documents by using principles of mathematics, natural sciences, and engineering sciences.
EEQ413.2	PO3	2	Students will be able to design system components based on the academic documents available in the literature.
	PO4	3	Students will be able to provide valid conclusions regarding complex engineering based problems by the literature survey of academic documents.
	PO6	2	Students will be able to apply reasoning based on the academic documents to assess societal issues and the consequent responsibilities relevant to the professional engineering practice.
	PO7	1	Students will be able to understand the impact of the engineering solutions in societal and environmental contexts for sustainable development based on literature survey.
	PO12	3	Students will be able to have lifelong learning with technological changes in improvement by referring various academic documents and literature survey.
	PSO3	2	Students will be able to have lifelong learning by apprehending academic documents available in literature so as to adapt to dynamic changes electrical engineering.
	PO1	3	Students will be able to apply the knowledge to prepare a
			presentation based on academic documents from the literature.
			Students will be able to analyse the presentation based on
	PO2	2	academic documents by using principles of mathematics, natural
			sciences, and engineering sciences.
			Students will be able to create, select, and apply appropriate
	PO5	3	techniques, resources, and modern engineering and IT tools for
			preparing a presentation based on academic documents.
			Students will be able to apply ethical principles and commit to
EEQ413.3	PO8	1	professional ethics and responsibilities while preparing a
			presentation.
			Students will be able to communicate effectively on complex
	PO10	2	engineering activities with the engineering community and with society being able to comprehend and make effective presentations.
			Students will be able to have lifelong learning with technological
	PO12	3	changes in improvement by preparing presentations based on
			various academic documents.

			Students will be able to have lifelong learning by preparing
	PSO3	2	presentations based on academic documents in electrical engineering.
			Students will be able to apply the knowledge to give a
	PO1	3	presentation based on academic documents from the literature.
			Students will be able to create, select, and apply appropriate
EEQ413.4	PO5	2	techniques, resources, and modern engineering and IT tools for delivering a presentation based on academic documents.
			Students will be able to apply ethical principles and commit to
	PO8	1	professional ethics and responsibilities while presenting a
			presentation.
	PO10	3	Students will be able to communicate effectively on complex engineering activities with the engineering community and with society being able to comprehend and deliver effective presentations.
	PO12	3	Students will be able to have lifelong learning with technological changes in improvement by delivering presentations based on various academic documents.
	PSO3	2	Students will be able to have lifelong learning by delivering presentations based on academic documents in electrical engineering.
EO413.5	PO1	3	Students will be able to apply the knowledge to prepare a technical report from the literature.
EQ413.5	PO2	3	Students will be able to analyse the academic documents by using principles of mathematics, natural sciences, and engineering sciences to prepare a technical report.
	PO3	3	Students will be able to design system components based on the academic documents available in the literature.
	PO4	3	Students will be able to provide valid conclusions regarding complex engineering based problems by the literature survey of academic documents and preparing a technical report.
	PO5	2	Students will be able to create, select, and apply appropriate techniques, resources, and modern engineering and IT tools for preparing a technical report based on academic documents.
	PO6	2	Students will be able to apply reasoning while preparing technical reports based on the academic documents to assess societal issues and the consequent responsibilities relevant to the professional engineering practice.
	PO8	2	Students will be able to apply ethical principles and commit to professional ethics and responsibilities while preparing a technical report.
	PO10	3	Students will be able to communicate effectively on complex engineering activities with the engineering community and with society by preparing a technical report.
	PO12	3	Students will be able to have lifelong learning with technological changes in improvement by preparing technical reports based on various academic documents.
	PSO3	2	Students will be able to have lifelong learning by preparing technical reports based on academic documents in electrical engineering.

EEL 411	CONTROL SYSTEMS	L	Т	Р	CREDIT	Year of Introduction
	LAB	0	0	3	2	2019

1	Demonstrate the knowledge of simulation tools for control system design.
2	Develop the mathematical model of a given physical system by conducting appropriate experiments.
3	Analyse the performance and stability of physical systems using classical and advanced control approaches.
4	Design controllers for physical systems to meet the desired specifications.

	EEL 411 Control Systems Lab														
COs/P Os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O 1	PS O 2	PS 0 3
CO1	3	3	2	3	3				3	3		3	2	2	2
CO2	3	3	3	3	3				3	3		3	2	2	2
CO3	3	3	3	3	3				3	3		3	2	2	2
CO4	3	3	3	3	3				3	3		3	2	2	2
Averag e	3	3	3	3	3				3	3		3	2	2	2

1

Able to have knowledge about different control system tools in MATLAB/ Simulink (PO1)

Able to apply the basic principles of mathematics and engineering sciences (PO2)

Able to design and develop control system for various applications in the field of technology (PO3)

Able to design experiments on control system applications by using appropriate tools in MATLAB/ Simulink (PO4)

Able to identify and select suitable tool boxes for various applications using MATLAB/ Simulink (PO5)

Able to work as a team to design proper controller for various control applications by using appropriate tools in MATLAB/ Simulink (PO9)

Able to communicate effectively on control applications by doing experiments and thereby able to comprehend and summarize the evaluation. (PO10)

Able to engage in lifelong learning of designing different control circuits using various tool boxes in MATLAB/ Simulink for various control applications(PO12)

Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of control system design using simulation tools in MATLAB/ Simulink for various applications

	Able to have a knowledge in developing mathematical model of any physical
	system by using MATLAB/ Simulink (PO1)
	Able to formulate the mathematical modelling for electrical, mechanical and
	electromechanical system(PO2)
	Able to develop mathematical model of any physical system using various
	toolboxes in MATLAB/ Simulink in the field of technology (PO3)
	Able to design experiments, analyse and interpret data from the simulation result
	on control system applications by using appropriate tools in MATLAB/ Simulink
	(PO4)
	Able to identify, select and apply appropriate techniques to analyse a given system
	by using appropriate tools in MATLAB/ Simulink (PO5)
	Able to work as a team to design and analyse a given physical system using
	MATLAB/ Simulink (PO9)
	Able to communicate effectively on control applications by doing experiments and
2	thereby able to comprehend and summarize the evaluation. (PO10)
	Able to engage in lifelong learning of developing mathematical model of any
	physical system by using MATLAB/ Simulink (PO12)
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for
	lifelong learning (PSO3) of developing mathematical model of any physical system
	using simulation tools in MATLAB/ Simulink,

	Able to have an in-depth knowledge about various methods for the stability analysis of a physical systemPO1)
	Analyse the performance and stability of any physical systems by various
	techniques using MATLAB/ Simulink (PO2)
	Able to design and develop a stable physical system using MATLAB/ Simulink (PO3)
	Able to design experiments, analyse and interpret data from the simulation result for the analysis of the performance of any physical systems by using appropriate tools in MATLAB/ Simulink (PO4)
	Able to identify, select and apply appropriate techniques to analyse a given system by using appropriate tools in MATLAB/ Simulink (PO5)
3	Able to work as a team to design and analyse stability for various physical systems using MATLAB/ Simulink (PO9)
	Able to communicate effectively on control applications by doing experiments and thereby able to comprehend and summarize the evaluation on stability analysis. (PO10)
	Able to engage in lifelong learning on stability analysis of any physical system by using MATLAB/ Simulink for various control applications (PO12)
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for
	lifelong learning (PSO3) to analyse the performance and stability of any physical system using simulation tools in MATLAB/ Simulink for various applications

	Able to have an in-depth knowledge about various controllers(PO1)
	Analyse the performance of various controllers using MATLAB/ Simulink (PO2)
4	Ability to design and develop proper controller for any physical system using MATLAB/ Simulink in the field of technology (PO3)
	Able to design controllers for physical systems to meet the desired specifications and analyse the simulation result using appropriate tools in MATLAB/ Simulink (PO4)
	Able to identify, select and apply proper controller for a given system by using appropriate tools in MATLAB/ Simulink (PO5)
	Able to work as a team to design and analyse the effect of different controllers for various control applications using MATLAB/ Simulink (PO9)
	Able to communicate effectively about various controllers for meeting specified requirements for various control applications by doing experiments and thereby able to comprehend and summarize the evaluation. (PO10)
	Able to engage in lifelong learning of choosing controllers for any physical system by using MATLAB/ Simulink for various control applications(PO12)
	Apply knowledge(PSO1), derive solutions (PSO2) and empower students for lifelong learning (PSO3) of choosing controllers for any physical system using simulation tools in MATLAB/ Simulink

EED 415	PROJECT PHASE 1	L	Т	Р	CREDIT	Year of Introduction
		0	0	6	2	2019

СО	Course outcome	Knowledge level
EED415. 1	Model and solve real world problems by applying knowledge across domains	К3
EED415. 2	Develop products, processes or technologies for sustainable and socially relevant applications	К3
EED415. 3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks	К3
EED415. 4	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms	К3
EED415. 5	Identify technology/research gaps and propose innovative/creative solutions	K4
EED415. 6	Organize and communicate technical and scientific findings effectively in written and oral forms	К3

P O	Programme outcomes											F	PSO		
СО	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P 0 1 0	P 0 1	P 0 1 2	P S 0 1	P S O 2	P S O 3
C O1	2	2	2	1	2	2	2	1	1	1	1	2	1	-	-
C O2	2	2	2	-	1	3	3	1	1	-	1	1	2	-	-
C 03	-	-	-	-	-	-	-	-	3	2	2	1	-	-	-
C O4	-	-	-	-	2	-	-	3	2	2	3	2	-	3	-
C 05	2	3	3	1	2	-	-	-	-	-	-	1	2	3	-
C 06	-	-	-	-	2	-	-	2	2	3	1	1	-		
A V G	2	2	2	1	2	3	3	2	2	2	2	1	2	3	-

CO-PO- PSO	LEVEL (Low/Mo de rate/High )	JUSTIFICA TION
EED415.1- PO1	2	Apply the knowledge of mathematics, science, engineering fundamentals to solve real world problems
EED415.1- PO2	2	Model and solve real world problems by applying problem analysis
EED415.1- PO3	2	Design solutions for real world problems by applying engineering knowledge
EED415.1- PO4	1	Solve real world problems by the use of research-based knowledge and research methods
EED415.1- PO5	2	Apply appropriate techniques, resources, and modern engineering and IT tools to solve real world problems
EED415.1- PO6	2	Model and solve real world problems by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities
EED415.1- PO7	2	Model and solve real world problems and find engineering solutions in societal and environmental contexts
EED415.1- PO8	1	Model and solve real world problems by committing to professional ethics and responsibilities
EED415.1- PO9	1	Model and solve real world problems as an individual, and as a member or leader in diverse teams
EED415.1- PO10	1	Model and solve real world problems and communicate effectively on complex engineering activities with the engineering community and with society
EED415.1- PO11	1	Apply project management to model and solve real world problems
EED415.1- PO12	2	Model and solve real world problems and get a chance to life longlearning.

EED415.1-	1	Model and solve real world problems to design, commission
PSO1		maintain various types of electrical systems
	-	Apply the knowledge of mathematics, science, engineering
EED415.2-	2	fundamentals to develop products, processes or technologies
PO1		for sustainable and socially relevant applications
EED415 2-	2	Develop products, processes or technologies for sustainable
PO2	2	and socially relevant applications by conducting problem analysis
		Develop products processes or technologies for sustainable
EED415.2-	2	and socially relevant applications by applying engineering
PO3		knowledge
		Apply appropriate techniques, resources, and modern
		engineering and IT tools to develop products, processes or
EED415.2-	1	technologies
PO5	-	
		Develop products, processes or technologies for sustainable
EED 415 0	2	and socially relevant applications by the contextual knowledge
EED415.2-	3	to assess societal, health, safety, legal and cultural issues and
FU0		consequent responsibilities
		Develop products, processes or technologies for sustainable
		and socially relevant applications in societal and
EED415.2-	3	environmental contexts
PO7		
FED/15 2_	1	Develop products, processes or technologies with professional
PO8	I	ethics and responsibilities
		Develop products, processes or technologies for sustainable
		and socially relevant applications as an individual, and as a
EED415.2-	1	member or leader in diverse teams
PO9		
EED415.2-	1	Apply project management to develop products, processes or
PO11		technologies for sustainable and socially relevant applications
		Develop a chance to lifelong learning from developing
		products, processes or technologies for sustainable and
EED415.2-	1	socially relevant applications
PO12		
EED415.2-	2	Develop products, processes or
PSO1		commission and maintain various types of electrical systems
		Function effectively to solve real world problems as an
		individual and as a leader in diverse teams and to comprehend
EED415.3-	3	and execute designated tasks
PO9		
		Model and solve real world problems and
		communicate
EED415.3- PO10	2	effectively on complex engineering activities with the engineering community and with society
-------------------	---	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
EED415.3- PO11	2	Apply project management to function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks
EED415.3- PO12	1	Execute designated tasks as a team and get lifelong learning.
EED415.4- PO5	2	Plan and execute tasks utilizing available resources with modern engineering and IT tools to solve real world problems
EED415.4- PO8	3	Plan and execute tasks by committing to professional ethics and responsibilities
EED415.4- PO9	2	Utilize available resources within timelines to execute tasks as an individual, and as a member or leader in diverse teams
EED415.4- PO10	2	Plan and execute tasks and communicate effectively to the engineering community and with society
EED415.4- PO11	3	Apply project management to plan and execute tasks utilizing available resources within timelines, to model and solve real world problems
EED415.4- PO12	2	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.
EED415.4- PSO2	3	Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available resources within timelines that meet the specified needs with ethical, social and environmental considerations.
EED415.5- PO1	2	Apply the knowledge of mathematics, science, engineering fundamentals to identify technology/research gaps and propose innovative/creative solutions
EED415.5- PO2	3	Identify technology/research gaps and propose innovative/creative solutions by applying problem analysis
EED415.5- PO3	3	Propose technology/research gaps by applying engineering knowledge
EED415.5- PO4	1	Developinnovative/creativesolutionsbytheuseofresearch-based knowledge and research methods
EED415.5-	2	Apply appropriate techniques, resources, and modern engineering and IT tools to Identify technology and propose creative solutions

PO5		
EED415.5- PO12	1	Identify technology/research gaps and propose innovative/creative solutions and experience lifelong learning.
EED415.5- PSO1	2	Identify technology and propose innovative/creative solutions to design, commission and maintain various types of electrical systems
EED415.5- PSO2	3	Apply technology and propose innovative/creative solutions that meet the specified needs of the society with ethical, social and environmental considerations.
EED415.6- PO5	2	Apply appropriate techniques, resources, and modern engineering and IT tools to organize technical and scientific findings effectively in written and oral forms.
		Express technical and scientific findings effectively in written and
EED415.6- PO8	I	oral forms by committing to professional ethics and responsibilities
EED415.6- PO9	1	Derive technical and scientific findings effectively in written and oral forms as an individual, and as a member or leader in a group
EED415.6- PO10	1	Effectively organize and communicate technical and scientific findings effectively in written and oral forms to the engineering community and with society
EED415.6- PO11	1	Apply project management to arrange technical and scientific findings effectively in written and oral forms
EED415.6- PO12	2	To get lifelong learning experience, organize and communicate technical and scientific findings to the engineering society

8

EET 402	ELECTRICAL SYSTEM	L	Т	Р	CREDIT	Year of Introduction
	DESIGN AND ESTIMATIO N	2	1	0	3	2019

# COURSE OUTCOMES

СО	Course outcome	Knowledge level
EET402. 1	Explain the rules and regulations in the design of components for medium and high voltage installations	K2
EET402. 2	Design lighting schemes for indoor and outdoor applications	K3
EET402. 3	Design low/medium voltage domestic and industrial electrical installations.	K3
EET402. 4	Design, testing and commissioning of 11 kV transformer substation.	К3
EET402. 5	Design electrical installations in high rise buildings.	K3

P O		Programme Outcomes											P S O		
С	Р	Р	Р	Р	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	Р
0	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	0	0	S	S	S
	1	2	3	4	5	6	7	8	9	1	1	1	0	0	0
										0	1	2	1	2	3

C 01	3	1	2	-	-	1	-	2	-	-	-	-	3	1	-
C O2	3	2	3	-	-	1	1	1	-	-	I	1	3	1	1
C 03	3	1	3	-	-	1	-	1	-	-	-	1	3	1	1
C O4	3	1	3	-	-	1	-	1	-	-	1	1	3	1	1
C 05	3	1	3	-	-	1	1	1	-	-	-	1	3	1	1

СО	РО	LEVEL	REMARKS
	PO 1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the rules and regulations in the design of components for medium and high voltage installations.
	PO 2	1	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with the rules and regulations in the design of components for medium and high voltage installations
	PO 3	2	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the rules and regulations in the design of components for medium and high voltage installations
	PO 6	1	Students will be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in in the design of components for medium and high voltage installations.

	PO 8	2	Students will be able to apply ethical principles and committo professional ethics and responsibilities and norms of the engineering –correlated to rules and regulations in the design of components for medium and high voltage installations.
	PS O 1	3	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field in medium and high voltage installations.
	PS O 2	1	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in connection with rules and regulations in the design of components for medium and high voltage installations.
	PO 1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while designing lighting schemes for indoor and outdoor applications
	PO 2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with design lighting schemes for indoor and outdoor applications
CO 2	PO3	3	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the design lighting schemes for indoor and outdoor applications
	PO6	1	Students will be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in the design of lighting schemes for indoor and outdoor applications

-			
	PO7	1	Students will be able to understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development in the design lighting schemes for indoor and outdoor application
	PO8	1	Students will be able to apply ethical principles and committo professional ethics and responsibilities and norms of the engineering –correlated to the design lighting schemes for indoor and outdoor application
	P O 12	1	Get lifelong learning while designing lighting schemes for indoor and outdoor applications
	PS O	3	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address
	1		challenges in the field while design lighting schemes for indoor and outdoor application
	PS O 2	1	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental
	_		considerations in the design of lighting schemes for indoor and outdoor application
	PS O 3	1	Students will be able to get lifelong learning in the design oflighting schemes for indoor and outdoor application
	PO 1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while designing low/medium voltage domestic and industrial electrical installations
CO 3	PO 2	1	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with design low/medium voltage domestic and industrial electrical installations
	PO 3	3	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate

		consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the design low/medium voltage domestic and industrial electrical installations
PO 6	1	Students will be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety,
		legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in the design low/medium voltage domestic and industrial electrical installations
PO 8	1	Students will be able to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering –correlated to the design low/medium voltage domestic and industrial electrical installations
PO 12	1	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field to design low/medium voltage domestic and industrial electrical installations
PSO	3	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and
1		maintain various types of electrical systems and address challenges in the field while design low/medium voltage domestic and industrial electrical installations
PSO 2	1	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in the design of low/medium voltage domestic and industrial electrical installations
PSO 3	1	Students will be able to get lifelong learning in the design oflow/medium voltage domestic and industrial electrical installations
PO 1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while designing, testing and commissioning of 11 kV transformersubstation

	PO 2	1	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with design, testing and commissioning of 11 kV transformer substation
CO 4	PO3	3	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the design, testing and commissioning of 11 kV transformer substation
	PO6	1	Students will be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland cultural issues and the consequent responsibilities relevant to the professional engineering practice in the design, testing and commissioning of 11 kV transformer substation
	PO8	1	Students will be able to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering –correlated to the design, testing and commissioning of 11 kV transformer substation
	P O	1	Students will be able to demonstrate knowledge and understanding of the engineering and management principles and apply these to one 's own work, as a member
	11		and leader in a team, to manage projects and in multidisciplinary environments in connection with design, testing and commissioning of 11 kV transformer substation
	P O 12	1	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field to design, testing and commissioning of 11 kV transformer substation
	PS O 1	3	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field while design, testing and
			commissioning of 11 kV transformer substation
	PS O 2	1	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in the design, testing and commissioning of 11 kV transformer substation

	PS O 3	1	Students will be able to get lifelong learning in the design, testing and commissioning of 11 kV transformer substation
	PO 1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while designing electrical installations in high rise buildings
	PO 2	1	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with design electrical installations in high rise buildings
CO 5	PO3	3	Students will be able to design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the design electrical installations in high rise buildings
	PO6	1	Students will be able to apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland cultural issues and the consequent responsibilities relevant to the professional engineering practice in the design electrical installations in high rise buildings
	PO7	1	Students will be able to understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development in the design of electrical installations in high rise buildings
	PO8	1	Students will be able to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering –correlated to the design electrical installations in high rise buildings
	P O 12	1	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address
			challenges in the field to the design electrical installations in high rise buildings
	PS O 1	3	Students will be able to apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field while design electrical installations in high rise buildings

PS O 2	1	Students will be able to derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations in the design of electrical installations in high rise buildings
PS O 3	1	Students will be able to get lifelong learning in the design ofelectrical installations in high rise buildings

EET 424	ENERGY MANAGEN	L T		Р	CREDIT	Year of Introduction		
	MENT	2	1	0	3	2019		

СО	Course outcome	Knowledge level
EET424.1	Analyse the significance of energy management and auditing.	K2
EET424.2	Discuss the energy efficiency and management of electrical loads.	K2
EET424.3	Apply demand side management techniques.	K2
EET424.4	Explain the energy management opportunities in industries.	K3
EET424.5	Compute the economic feasibility of the energy conservation measures.	К3

СО	P O	PO 10	PO 11	PO 12	PS O	PS O	PS O								
	1	2	3	4	5	6	7	8	9				1	2	3
EET424. 1	2					1	1		1				2	2	
EET424.	2		1	1		1	1						2	2	

2										
EET424. 3	2	1	1	1	1			2	2	
EET424. 4	2	1	1	1	1			2	2	
EET424. 5	2						2	2	2	
Average	2	0.6	0.6	0.8	0.8	0.2	0.4	2	2	

СО	PO/ PSO	Map ping	Justification
	PO1	2	Students will be able to analyse the significance of energy management and auditing.
	PO6	1	Students will be able to apply reasoning based on significance of energy management and auditing for the responsibilities relevant to the professional engineering practice.
EET424.1	PO7	1	Students will be able to understand the significance of energy management and auditing in societal and environmental contexts for sustainable development.
	PO9	1	Students will be able to work effectively as an individual, and as a member or leader in energy audit team.
	PSO1	2	Students will be able to apply the engineering knowledge on significance of energy management and auditing.
	PSO2	2	Students will be able to derive solutions to problems related to the significance of energy management and auditing at various institutions.
	PO1	2	Students will be able to describe the energy efficiency and management of electrical loads.
	PO3	1	Students will be able to design system components based on the energy efficiency and management of electrical loads.
	PO4	1	Students will be able to provide valid conclusions regarding complex engineering based problems based on energy efficiency and management of electrical loads.
EET424.2	PO6	1	Students will be able to apply reasoning based on the energy efficiency and management of electrical loads for the responsibilities relevant to the professional engineering practice.
	PO7	1	Students will be able to impart the knowledge of energy efficiency and management of electrical loads in societal and environmental contexts for sustainable development.
	PSO1	2	Students will be able to apply the engineering knowledge on energy efficiency and management of electrical loads.

CYCLE 1 - NAAC ACCREDITATION 2023

	PSO2	2	Students will be able to derive solutions to problems related to energy efficiency and management of electrical loads at various institutions.
	PO1	2	Students will be able to describe the demand side management techniques.
	PO3	1	Students will be able to design system components based on demand side management techniques.
	PO4	1	Students will be able to provide valid conclusions regarding complex engineering based problems based on demand side management techniques.
EET424.3	PO6	1	Students will be able to apply reasoning based on demand side management techniques for the responsibilities relevant to the professional engineering practice.
	PO7	1	Students will be able to impart the knowledge of demand side management techniques in societal and environmental contexts for sustainable development.
	PSO1	2	Students will be able to apply the engineering knowledge on demand side management techniques.
	PSO2	2	Students will be able to derive solutions to problems related to demand side management techniques at various institutions.
	PO1	2	Students will be able to describe the energy management opportunities in industries.
	PO3	1	Students will be able to design system components based on energy management opportunities in industries.
	PO4	1	Students will be able to provide valid conclusions regarding complex engineering based problems based on energy management opportunities in industries.
EET424.4	PO6	1	Students will be able to apply reasoning based on energy management opportunities in industries for the responsibilities relevant to the professional engineering practice.
	PO7	1	Students will be able to impart the knowledge of energy management opportunities in industries in societal and environmental contexts for sustainable development.
	PSO1	2	Students will be able to apply the engineering knowledge on energy management opportunities in industries.
	PSO2	2	Students will be able to derive solutions to problems related to energy management opportunities in industries.
	PO1	2	Students will be able to compute the economic feasibility of the energy conservation measures.
EET424.5	PO11	2	Students will be able to analyse the techno-economic feasibility of various energy conservation measures as a member or a leader of energy audit team.
	PSO1	2	Students will be able to apply the engineering knowledge on economic feasibility of the energy conservation measures.
	PSO2	2	Students will be able to derive solutions to problems related to economic feasibility of the energy conservation measures.

EET 468	INDUSTRIAL INSTRUMEN	L	Т	Р	CREDIT	Year of Introduction
	TATION AND AUTOMATI ON	2	1	0	3	2019

СО	Course outcome	Knowledge level						
EET468. 1	Identify the sensors/transducers suitable for industrial applications.	K2						
EET468. 2	Design the signal conditioning circuits for industrial instrumentation and automation.	K2						
EET468. 3	Analyze the concepts of data transmission and virtual instrumentation related to automation							
EET468. 4	Develop the logic for the process control applications using PLC programming K2							
EET468. 5	Describe the fundamental concepts of DCS and SCADA systems	K2						

P		Programme											PSO		
0		outcomes													
	Р	P	P	Р	Р	Р	Р	Р	Р	P	Р	Р	Р	Р	Р
CO	0	0	0	0	0	0	0	0	0	0	0	0	S	S	S
	1	2	3	4	5	6	7	8	9	1	1	1	0	0	0
										0	1	2	1	2	3
C 01	3	1	-	-	-	-	-	-	-	-	-	2	-	-	-
C O2	3	1	-	-	-	-	-	-	-	-	I	2	2	2	-
C	3	1	-	-	-	-	-	-	-	-	-	2	-	-	-
03															
C	3	1	-	-	-	-	-	-	-	-	-	2	2	2	-
O4															
C O5	3	1	-	-	-	-	-	-	-	-	-	2	-	-	-
A V	3	1	-	-	-	-	-	-	-	-	-	2	2	2	-
G															

CO-PO-PSO	LEVEL (Low/Moderat e/High)	JUSTIFICATIO N
EET 468.1- PO1	3	In depth engineering knowledge in sensors/transducers suitable for industrial applications.
EET 468.1- PO2	1	Analyze sensors/transducers suitable for industrialapplications.
EET 468.1- P012	2	Get lifelong learning from the design and selection of sensors/transducers for industrial applications.
EET 468.2- PO1	3	In depth engineering knowledge in signal conditioning circuits for industrial instrumentation and automation.
EET 468.2- PO2	1	Analyze signal conditioning circuits for industrial instrumentation and automation
EET 468.2- P012	2	Get lifelong learning from the design and selection of signal conditioning circuits.
EET 468.2- PSO1	2	Develop the signal conditioning circuits to design, commission and maintain various types of electrical systems
EET 468.2- PSO2	2	Develop sustainable solution to signal conditioning circuits for industrial instrumentation and automation.
EET 468.3- PO1	3	In depth engineering knowledge in the concepts of data transmission and virtual instrumentation related to automation
EET 468.3- PO2	1	Analyze the concepts of data transmission and virtual instrumentation related to automation
EET 468.3- P012	2	Analyze the concepts of data transmission and virtual instrumentation to get lifelong learning.
EET 468.4- PO1	3	In depth engineering knowledge in the development of the logic for the process control applications using PLC programming
EET 468.4- PO2	1	Analyze the process control applications using PLC programming
EET 468.4- P012	2	Develop the logic for the process control applications using PLC programming and acquire lifelong learning.
EET 468.4- PSO1	2	Develop the logic for the process control applications using PLC programming to design, commission and maintain various types of electrical systems
EET 468.4-	2	Develop sustainable solution to process control

CYCLE 1 - NAAC ACCREDITATION 2023

PSO2		applications using PLC programming
EET 468.5- PO1	3	In depth engineering knowledge in the fundamental concepts of DCS and SCADA systems
EET 468.5- PO2	1	Analyze the fundamental concepts of DCS and SCADA systems
EET 468.5- P012	2	Get lifelong learning from the design of DCS and SCADAsystems.

EET 426	SPECIAL ELECTRICA	L	Т	Р	CREDIT	Year of Introduction
	L MACHINES	2	1	0	3	2019

СО	Course outcome	Knowledge level
EET426. 1	Analyse the performance of different types of permanent magnet motors	К3
EET426. 2	Analyse the performance of a stepper motor	K3
EET426. 3	Analyse the performance of different types of reluctance motors	K3
EET426. 4	Explain the construction and principle of operation of servo motors, single phase motors and linear motors	K2
EET426. 5	Analyse the performance of linear induction motors	К3

P O		Programme outcomes											PSO		
CO	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P 0 1 0	P 0 1 1	P 0 1 2	P S O 1	P S O 2	P S O 3
C 01	3	2	-	-	-	2	-	-	-	-	-	2	2	2	-
C O2	3	2	-	-	-	2	-	-	-	-	_	2	2	2	-

C 03	3	2	-	-	-	2	-	-	-	-	-	2	2	2	-
C O4	3	2	-	-	-	2	-	-	-	-	-	2	2	2	-
C 05	3	2	-	-	-	2	-	-	-	-	-	2	2	2	-
A V G	3	2	-	_	-	2	-	-	-	_	-	2	2	2	-

	(Low/ Moderate/ High)	
CO1-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of different types of permanent magnet motors.
CO1-PO2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences.
CO1-P06	2	Able to Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in connection with permanent magnet motors
C01-P012	2	Get lifelong learning from the performance of different types of permanent magnet motors
CO1-PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design various types of Permanent Magnet Motors
CO1-PSO2	2	Students will be able to analyse and solve electrical engineering problems in connection with working principle, types ofpermanent magnet motors.
CO2-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of different types of stepper motors.
СО2-РО2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences.
C02-P06	2	Able to Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in connection with stepper motors
CO2-P012	2	Get lifelong learning from the performance of different types of stepper motors
CO2-PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design various types of Stepper Motors

CO2-PSO2	2	Students will be able to analyse and solve electrical engineering problems in connection with working principle, types of stepper motors.
CO3-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of different types of reluctance motors.
CO3-PO2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with reluctance motors
CO3-PO6	2	Able to Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in connection with reluctance motors
CO3-P012	2	Get lifelong learning from the performance of different types of reluctance motors
C03-PS01	2	Students will be able to apply knowledge of mathematics, science and engineering to design various types of Reluctance Motors
CO3-PSO2	2	Students will be able to analyse and solve electrical engineering problems in connection with working principle, types of Reluctance motors.
CO4-PO1	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of different types of servo motors, single phase motors and linear motors
CO4-PO2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with servo motors, single phase motors and linear motors
CO4-PO6	2	Able to Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in connection with servo motors, single phase motors and linear motors
CO4-P012	2	Get lifelong learning from the performance of different types of servo motors, single phase motors and linear motors
CO4-PSO1	2	Students will be able to apply knowledge of mathematics, science and engineering to design various types of servo motors, single phase motors and linear motors
CO4-PSO2	2	Students will be able to analyse and solve electrical engineering problems in connection with working principle, types of servo motors, single phase motors and linear motors
C05-P01	3	Students will be able to apply the knowledge of mathematics, science, Engineering fundamentals while studying the performance of linear induction motors
CO5-PO2	2	Students will be able to analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with performance of linear induction motors

CO5-PO6	2	Able to Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in connection with performance of linear induction motors
CO5-P012	2	Get lifelong learning from the performance of linear induction motors
C05-PS01	2	Students will be able to apply knowledge of mathematics, science and engineering to design linear induction motors
CO5-PSO2	2	Students will be able to analyse and solve electrical engineering problems in connection with working principle, performance of linear induction motors

EED 416	PROJECT PHASE II	L	Т	Р	CREDIT	Year of Introduction
		0	0	12	4	2019

СО	Course outcome	Knowledge level
EED416. 1	Model and solve real world problems by applying knowledge across domains	К3
EED416. 2	Develop products, processes or technologies for sustainable and socially relevant applications	К3
EED416. 3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks	К3
EED416. 4	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms	К3
EED416. 5	Identify technology/research gaps and propose innovative/creative solutions	K4
EED416. 6	Organize and communicate technical and scientific findings effectively in written and oral forms	К3

# MAPPING

CO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	P	P	P	PS	PS	PS
										10	11	12	1	2	3
CO1	2	2	2	1	2	2	2	1	1	1	1	2	1	-	-
CO2	2	2	2	-	1	3	3	1	1	-	1	1	2	-	-
CO3	-	-	-	-	-	-	-	-	3	2	2	1	-	-	-
CO4	-	-	-	-	2	-	-	3	2	2	3	2	-	3	-
CO5	2	3	3	1	2	-	-	-	-	-	-	1	2	3	-
CO6	-	-	-	-	2	-	-	2	2	3	1	1	-		
AV G	2	2	2	1	2	3	3	2	2	2	2	1	2	3	-

CO-PO- PSO	LEVEL (Low/Mo de rate/High )	JUSTIFICAT ION
EED416.1- PO1	2	Apply the knowledge of mathematics, science, engineering fundamentals to solve real world problems
EED416.1- PO2	2	Model and solve real world problems by applying problem analysis
EED416.1- PO3	2	Design solutions for real world problems by applying engineering knowledge
EED416.1- PO4	1	Solve real world problems by the use of research-based knowledge and research methods
EED416.1- PO5	2	Apply appropriate techniques, resources, and modern engineering and IT tools to solve real world problems

	1	Model and solve real world problems by the contextual
EED/16 1	2	would and solve real world problems by the contextual
EED410.1-	۷	KIIOWIEUge to assess societal, licalui, safety, legal and cultural
PU0		Model and solve real world problems and find
EED416.1-	2	engineering
PO7		solutions in societal and environmental contexts
		Model and solve real world problems by committing to
EED416.1-	1	professional ethics and responsibilities
PO8		
EED416.1-	1	Model and solve real world problems as an individual, and
PO9		as a member or leader in diverse teams
	+	Model and solve real world problems and communicate
FFD4161-	1	effectively on complex engineering activities with the
DO10	1	engineering community and with society
1010		Apply project management to model and solve real
EED416.1-	1	world
PO11		problems
		Model and solve real world problems and get a chance to life
EED410.1-	2	longlearning.
POIZ		Madel and solve real world problems to design commission
EED416.1-	1	model and solve real world problems to design, commission
PSO1		maintain various types of electrical systems
	1	Apply the knowledge of mathematics, science, engineering
EED416.2-	2	fundamentals to develop products. processes or technologies
PO1	_	for sustainable and socially relevant applications
		Develop products, processes or technologies for sustainable
EED416.2-	2	and
PO2		socially relevant applications by conducting problem analysis
FFD4162-	2	Develop products, processes or technologies for sustainable
PO3	2	and socially relevant applications by applying engineering
105		knowledge
		Apply appropriate techniques, resources, and modern
EED416.2-	1	engineering and IT tools to develop products, processes or
PO5		technologies
	Ţ	Develop products, processes or technologies for sustainable
EED416.2-	3	and socially relevant applications by the contextual knowledge
PO6		to
		assess societal, health, safety, legal and cultural issues and
		the consequent responsibilities
		Develop products, processes or technologies for sustainable
EED416.2-	3	and
PO7		socially relevant applications in societal and environmental
		contexts
EED416.2-	1	Develop products, processes or technologies with
PO8		professional ethics and responsibilities

		Develop products, processes or technologies for sustainable
EED416.2-	1	and socially relevant applications as an individual, and as a
PO9	_	member or leader in diverse teams
	1	Apply project management to develop products, processes
EED416.2-	1	or
PO11		technologies for sustainable and socially relevant applications
		Develop a chance to lifelong learning from developing
EED416.2-	1	products, processes or technologies for sustainable and socially
PO12		relevant applications
FED/16 2-	2	Develop products, processes or technologies to
PSO1	2	design,
1501		commission and maintain various types of electrical systems
	2	Function effectively to solve real world problems as an
EED416.3-	3	individual and as a leader in diverse teams and to comprehend
PO9		and execute designated tasks
		Model and solve real world problems and
EED416.3-	2	offectively on complex engineering activities with the
PO10		enectively on complex engineering activities with the
		A poly project management to function offectively as an
	2	individual
EED416.3-	2	and as a leader in diverse teams and to comprehend and
POIT		executed esignated tasks
EED416.3-	1	Execute designated tasks as a team and get lifelong learning.
PO12		
FED/16/-	2	Plan and execute tasks utilizing available resources with
PO5	2	modernengineering and IT tools to solve real world problems
105		Plan and execute tasks by committing to professional ethics
EED416.4-	3	and
PO8		responsibilities
EED/16/	2	Utilize available resources within timelines to execute tasks as
DO0	2	anindividual, and as a member or leader in diverse teams
109		Plan and execute tasks and communicate effectively to
EED416.4-	2	the
PO10		engineering community and with society
		Apply project management to plan and execute tasks utilizing
EED416.4-	2	available resources within timelines, to model and solve real
DO11	5	
POIT	5	world problems
POII	5	world problems Plan and execute tasks utilizing available resources within
EED416.4-	2	world problems Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and
EED416.4- PO12	2	world problems Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.
EED416.4- PO12	2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve</li> </ul>
EED416.4- PO12 EED416.4-	2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available</li> </ul>
EED416.4- PO12 EED416.4- PSO2	2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available resources within timelines that meet the specified needs with</li> </ul>
EED416.4- PO12 EED416.4- PSO2	2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available resources within timelines that meet the specified needs with ethical, social and environmental considerations.</li> </ul>
EED416.4- PO12 EED416.4- PSO2	2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available resources within timelines that meet the specified needs with ethical, social and environmental considerations.</li> <li>Apply the knowledge of mathematics, science,</li> </ul>
EED416.4- PO12 EED416.4- PSO2 EED416.5-	2 3 2 2 2	<ul> <li>world problems</li> <li>Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms and experience lifelong learning.</li> <li>Derive sustainable solutions, plan and execute tasks to solve complex electrical engineering problems utilizing available resources within timelines that meet the specified needs with ethical, social and environmental considerations.</li> <li>Apply the knowledge of mathematics, science, engineering</li> </ul>

		proposeinnovative/creative solutions
FED/16.5-	3	Identify technology/research gaps and
PO2	5	propose innovative/creative solutions by applying problem analysis
		Propose technology/research gaps by applying problem analysis
EED416.5-	3	knowledge
P03		Develop innovative/creative solutions by the use
EED416.5-	1	of
P04		research-based knowledge and research methods
EED/16.5	2	Apply appropriate techniques, resources, and modern
PO5	2	creative solutions
	1	Identify technology/research gaps and
EED410.5-	1	propose
1012		Innovative/creative solutions and experience lifelong learning.
FFD416 5-	2	to design commission and maintain various types of electrical
PSO1	2	systems
		Apply technology and propose innovative/creative solutions
EED416.5-	3	thatmeet the specified needs of the society with ethical,
PSO2		social and
		Apply appropriate techniques resources and modern
EED416.6-	2	engineering and IT tools to organize technical and scientific
PO5	_	findings effectively in written and oral forms.
		Express technical and scientific findings effectively in written
EED416.6-	1	and
PO8		oral forms by committing to professional ethics
	1	Derive technical and scientific findings effectively in written
EED416.6-	1	and
F09		oral forms as an individual, and as a member or leader in a group
		Effectively organize and communicate technical and scientific
EED416.6-	1	findings effectively in written and oral forms to the
PO10		engineering community and with society
EED416.6-	1	Apply project management to arrange technical and
PO11		findings effectively in written and oral forms
	2	To get lifelong learning experience, organize and
PO12	2	communicatetechnical and scientific findings to the
1012		engineering society

EET 404	COMPREHEN SIVE	L	Т	Р	CREDIT	Year of Introduction
	COURSE VIVA	1	0	0	1	2019

СО	Course outcome	Knowledge level
EET404.1	Analyse electrical circuits, signal processing methods and different linear and non-linear control system techniques.	К2
EET404.2	Understand the fundamentals of analog and digital electronics, power electronic converters and its applications, and microprocessor/microcontroller programming.	K2
EET404.3	Analyse the performance of DC machines, transformers, induction and synchronous machines with fundamentals ofelectromagnetics.	K2
EET404.4	Understand the fundamentals of electrical power generation, transmission, distribution, measurements, power system analysis and electrical system design.	K2

СО	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
EET404.	3	3	1									2	2	2	2
1															
EET404. 2	2	2	2	1								2	2	2	2
EET404.	2	2	2			2						2	2	2	

3													
EET404. 4	2	1	2		1	1	1		1	1	2	1	1
Average	2.25	2	2	1	1.5	1	1		1	1.75	2	1.75	1.25

СО	PO/ PSO	Map ping	Justification
	PO1	3	An in-depth knowledge of mathematics and electrical engineering.
	PO2	3	Analyse DC and AC electric networks and basic operations on signals and systems.
	PO3	1	Able to conduct time domain analysis, frequency domain analysis and stability analysis.
EET404.1	PO12	2	Analyse advanced control methods for modelling and stability analysis of linear and nonlinear systems.
	PSO1	2	Apply knowledge of two port network used in various applications.
	PSO2	2	Derive solutions of stability analysis in control system techniques.
	PSO3	2	Empower students for lifelong learning for the analysis of three phase circuits in power system.
	PO1	2	An in-depth knowledge of mathematics and power electronics.
-	PO2	2	Analysis of AC voltage controllers and inverters using basic principles of mathematics and engineering sciences.
	PO3	2	Design and Analysis of Buck, Boost, Buck-Boost converter circuits for various applications.
FFT 40 4 0	PO4	1	Design and analysis of analog and digital electronic circuits.
EE1404.2	PO12	2	Ability to engage in lifelong learning of programming of microprocessor and microcontroller for various applications.
	PSO1	2	Apply knowledge of microprocessor and microcontroller.
	PSO2	2	Derive solutions of analog and digital electronics for various applications.
	PSO3	2	Empower students for lifelong learning for power electronic applications in power system.
	PO1	2	Describe the operation and performance of electrical machines.
	PO2	2	Analyse the induction motor using the performance characteristics.
EET404.3	PO3	2	Design system components based on the performance of Alternator.
	PO6	2	Apply reasoning based on performance of transformer for the responsibilities relevant to the professional engineering practice.

	PO12	2	Able to have lifelong learning with technological changes in performance of electrical machines.
	PSO1	2	Apply the engineering knowledge on electromagnetics for analyzing the performance of electrical machines.
	PSO2	2	Derive solutions to problems related to the operation and performance of synchronous and induction machines
	PO1	2	apply the knowledge of mathematics, science, Engineering fundamentals of electrical power generation, transmission and distribution.
	PO2	1	analyze complex engineering problems using first principles of mathematics, natural sciences, and Engineering sciences in connection with operation and construction of basic instruments for measurement of electrical quantities.
	PO3	2	design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations –these are correlated to the design lighting schemes for indoor and outdoor applications
EET404.4	PO6	1	apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice in the design low/medium voltage domestic and industrial electrical installations
	PO7	1	understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development in the design of electrical installations in high rise buildings
	PO8	1	apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field to design low/medium voltage domestic and industrial electrical installations
	PO11	1	able to demonstrate knowledge and understanding of the engineering and management principles and apply these to one 's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments in connection with design, testing and commissioning of 11 kV transformer substation
	PO12	1	Knowledge of analyzing the steady state and transient stability of power system networks is required to equip electrical engineers for lifelong learning
	PSO1	2	Knowledge of analyzing the active and reactive power flow of a power system network is required to design and maintain various systems in electrical engineering.
	PSO2	1	Knowledge of scheduling the optimal generation scheme for a power system is required find solutions to complex electrical engineering problems

	PSO3	1	Knowledge of per unit systems and faults in the system is required to equip electrical engineers for lifelong learning
--	------	---	---------------------------------------------------------------------------------------------------------------------------

# **OUTCOME BASED EDUCATION**

# ST.JOSEPH'S COLLEGE OF ENGINEERING AND TECHNOLOGY, PALAI

#### **Department of Electrical and Electronics Engineering**

### 1. Mission:

#### **Mission Statement**

Develop technically competent, emotionally strong and socially committed Electrical & Electrical sof international excellence.

## 2. Vision:

#### Vision Statement

- To develop and maintain a conducive infrastructure and learning-environment, to bring out good quality Electrical & Electronics Engineering graduates.
- To appoint and retain a team of competent, dedicated and research oriented faculty.
- To inculcate ethical & moral values among students and faculty.

## 3. Title of the Program (s):

#### **Electrical and Electronics Engineering**

#### 4. Program Educational Objectives:

**PEO-I:** <u>Career</u>: Graduates will identify, analyze, design, install, maintain and operate on electrical engineering products and systems to provide solution in complex electrical fields. CYCLE 1 - NAAC ACCREDITATION 2023 **PEO-II:** <u>Technical</u>: Graduates will be a life-long learner of state of the art technology through collaboration with industry and academia.

**PEO-III:** <u>Behaviour</u>: Graduates will practice the modern technology with commitment to engineering ethics, human values and environmental sustainability.

## 5. Program Outcomes:

Engineering Graduates will be able to:

#### 1. Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

#### 2. <u>Problem analysis:</u>

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

#### 3. <u>Design/development of solutions:</u>

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

#### 4. <u>Conduct investigations of complex problems:</u>

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

## 5. <u>Modern tool usage:</u>

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

#### 6. <u>The engineer and society:</u>

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

#### 7. Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

#### 8. <u>Ethics:</u>

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

#### 9. <u>Individual and team work:</u>

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

#### 10. <u>Communication:</u>

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

#### 11. <u>Project management and finance:</u>

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

#### 12. <u>Life-long learning:</u>

Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

#### CYCLE 1 - NAAC ACCREDITATION 2023

	со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BE10103	CO1	2	1	-	-	-	-	-	-	-	-	-	-	2	-	1
Introducti	CO2	3	2	1	1	-	-	-	-	-	-	-	-	3	-	2
on to	CO3	3	3	2	2	1	-	-	-	-	-	-	-	3	-	2
Electrical	CO4	3	3	2	2	1	-	-	-	-	-	-	-	2	1	1
Engineeri	CO5	2	1	-	-	-	-	-	-	-	-	-	-	3	1	2
ng	CO6	3	3	2	2	1	-	-	-	-	-	-	-	2	-	2
	Averag e	2.67	2.17	1.75	1.75	1	-	-	-	-	-	-	-	2.5	1	1.67

# 6. Course- Program outcome Matrix (Sample ):

	со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	3	2	2	1	-	-	-	-	-	-	-	3	3	1
EE 201	CO2	3	2	1	1	-	-	-	-	-	-	-	-	3	3	-
Circuits	CO3	3	3	2	2	1	-	-	-	-	-	-	-	3	3	1
and	CO4	3	3	2	2	1	-	-	-	-	-	-	-	3	3	1
Networks	CO5	1	-	-	I	-	-	1	-	1	-	-	-	1	1	-
	CO6	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
	Average	2.33	2.75	1.75	1.75	1	-	-	-	-	-	-	-	2.33	2.33	1
	со	PO1	PO2	2 PO3	B PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	<b>CO</b>	<b>PO1</b>	PO2	2 PO3	<b>B PO</b> 4	PO5	5 PO6	PO7 -	PO8 -	<b>PO9</b>	<b>PO10</b>	PO11 -	PO12 -	<b>PSO1</b>	<b>PSO2</b> 3	PSO3
EE 231	<b>CO</b> 1 2	<b>PO1</b> 3 3	PO2	2 PO:	<b>B PO4</b> 1	PO5	5 PO6 - -	PO7 - -	PO8 - -	<b>PO9</b> 1 1	<b>PO10</b> 1 1	PO11 - -	PO12 - -	<b>PSO1</b> 3 3	<b>PSO2</b> 3 3	PSO3  _
EE 231 ELECTRONI	co 1 2 c 3	PO1 3 3 3 3	PO2 2 2 3	2 PO3	<b>B PO4</b> 1 1 2	PO5	• PO6 - - -	PO7	PO8	<b>PO9</b> 1 1 2	<b>PO10</b> 1 1 2	PO11 - - -	PO12 - - -	<b>PSO1</b> 3 3 3 3	<b>PSO2</b> 3 3 3 3	<b>PSO3</b> 1
EE 231 ELECTRONI CIRCUITS	co c c d c c	PO1 3 3 3 3 3	PO2 2 2 3 3	2 PO3 1 1 2 2	B PO2       1       1       2       2	PO5 1 1 1	• PO6 - - - -	PO7	PO8	PO9 1 1 2 2	PO10 1 1 2 2	PO11	PO12	<b>PSO1</b> 3 3 3 3 3	<b>PSO2</b> 3 3 3 3 3	<b>PSO3</b> 1 1
EE 231 ELECTRONI CIRCUITS LAB	co 1 2 3 4 5	PO1 3 3 3 3 3 3 3	PO2 2 2 3 3 2 2	2 PO3 1 1 2 2 1	<ul> <li><b>B</b> PO2</li> <li>1</li> <li>1</li> <li>2</li> <li>2</li> <li>1</li> </ul>	PO5	• PO6 - - - - - - -	PO7	PO8	PO9 1 1 2 2 1	PO10 1 1 2 2 1	PO11	PO12	<b>PSO1</b> 3 3 3 3 3 3 3	<b>PSO2</b> 3 3 3 3 3 3 3	PSO3 1 1
EE 231 ELECTRONI CIRCUITS LAB	co 1 2 3 4 5 6	PO1 3 3 3 3 3 3 2	PO2 2 2 3 3 2 1	2 PO3 1 1 2 2 1 1 -	B PO4	PO5	• PO6 - - - - - - -	PO7	PO8	PO9 1 1 2 2 1 -	PO10 1 1 2 2 1 -	PO11	PO12	PSO1 3 3 3 3 3 2	<b>PSO2</b> 3 3 3 3 3 2	PSO3

	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	C451.1	1	1	-	-	-	-	-	-	2	-	1	-	2	1	-
EE 451 SEMINAR AND PROJECT PRELIMINARY	C451.2	1	2	-	2	-	-	-	-	2	-	1	-	2	1	-
	C451.3	1	2	2	-	2	-	-	-	3	3	1	-	2	1	-
	C451.4	1	1	2	-	-	-	-	-	2	-	1	-	2	1	-
	C451.5	1	2	-	2	-	-	-	-	2	-	1	-	2	1	-
	C451.6	1	1	-	-	2	-	-	-	3	3	1	-	2	1	-
	Average	1	2	2	2	2	-	-	-	2	3	1	-	2	1	-

EE 492 PROJECT	со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	C492.1	2	1	-	-	-	-	-	-	3	2	1	-	2	1	1
	C492.2	3	3	1	1	-	-	-	-	-	1	-	2	2	1	1
	C492.3	3	2	3	1	3	1	1	1	1	1	1	1	2	1	1
	C492.4	2	2	1	1	1	1	1	1	1	1	1	1	2	3	1
	C492.5	2	2	2	2	2	-	-	-	-	-	-	-	2	3	1
	C492.6	2	-	-	-	-	-	-	-	2	3	-	-	2	-	1
	Average	2	2	2	1	2	1	1	1	2	2	1	1	2	2	1

# 7. Course Outcomes (for sample courses):

Course Code	Course name	СО	Statement
CY 100 Engineering chemistry		CO1	develop the fundamental concepts of electrochemical and spectroscopic techniques.
		CO2	predict the structure of chemical compounds using spectroscopic and thermal analysis techniques.
		CO3	apply modern instrumental techniques for engineering purpose.
		CO4	prepare various engineering materials and identify its applications in various fields of engineering.
		CO5	develop basic knowledge on fuels and lubricants.
		CO6	identify suitable water treatment techniques.

CY 110	Engineering chemistry	СО	Statement			
	140	CO1	Develop knowledge about different types of qualitative and quantitative estimation			
		CO2	Analyse the quality of water by determining its chemical parameters			
		CO3	Aquire the skill for the preparation of engineering materials like polymers			
		CO4	Measure the conductivity and PH of any sample thereby the purity of sample can be checked			
		CO5	Understand, explain and use instrumental techniques for chemical analysis			
		CO6	Develop scientific attitude by demonstrating the theoretical concepts of engineering chemistry			
course code	course name	СО	Statement			
EE 110	ELECTRICAL ENGINEERING WORKSHOP	CO1	Identify different types of cables, wires and other accessories used in wiring and also knew the essential energy conservation in electrical systems			
		CO2	Practice simple lighting circuit wiring through PVC conduits for domestic appliances/installations			
		CO3	Practice electrical power circuit wiring for industrial installations			
		CO4	Measure electric circuit parameters voltage, current, power and power factor of different equipments/appliances.			
		CO5	Familiarize wiring of back up power supply used in domestic installation.			
		CO6	Calculate the electric tariff using energy meter readings			
course code	course name	СО	Statement			
ME 110	BASIC MECHANICAL ENGINEERING	CO1	Apply the basic principles of Thermodynamics in air standard cycles			
		CO2	Explain the basic working principles of various energy conversion devices			
		CO3	describe the working of various power transmission devices and majour automobile components			

		CO4	Describe the working and applications of Refrigeration and Airconditioning Systems				
		CO5	Identify various engineering materials and the manufacturing processes involved in it				
		CO6	Explain the basic components of and operations performed in various machine tools				
course code	course name	СО	Statement				
ME 110	MECHANICAL	CO1	Identyfy major mechanical tools				
	WORKSHOP	CO2	Understand various wooden joints				
		CO3	Understanding deformation of aluminium test specimen due to forging				
		CO4	Understand moulding process				
		CO5	Understand various metal joining process				
	course name	СО	Statement				
BE 10 103	Introduction to Electrical Engineering	CO1	Understand the concept of circuit elements, their VI relations and the principle of electromagnetic induction				
		CO2	Apply the principles of KVL and KCL to solve electric circuits				
		CO3	Compare Electric and Magnetic circuits and solve numeric Problems				
		CO4	Analyse RLC circuits with the concept of AC				
		CO5	Describe the concept of power factor and resonance in electric circuits				
		CO6	Analyse 3 phase circuits				
course code	course name	СО	Statement				
EE 492	PROJECT	CO1	Select a problem for project working as a team (k3)				
		CO2	Apply the available literature on chosen problem (k3)				
		CO3	Apply engineering knowledge in practical problem (k3)				
		CO4	Develop creative thinking in finding viable solutions to engineering problems (k5)				
		CO5	Formulate hypothesis/design/methodology/work plan of the project.(k6)				

		CO6	Prepare and present report of the project work.(k5)		
course code	course name	СО	Statement		
EE 404	INDUSTRIAL INSTRUMENTATION	CO1	understand process control system and choice of transducers.(K2)		
	& AUTOMATION	CO2	understand various transducer measurements.(K2)		
		CO3	explain various signal conditioning systems for transducers.(K2)		
		CO4	understand about Micro Electromechanical Systems (MEMS) & Virtual instrumentation systems. (K2)		
		CO5	explain about automation system and their types. (K2)		
		CO6	understand the programming realization of PLC.(K2)		
course code	course name	СО	Statement		
EE 474	ENERGY MANAGEMENT & AUDITING	CO1	understand the Energy Management Principles and know how to plan Energy Management with clear understanding of different methodologies (k2)		
		CO2	understnd Energy Management opportunities in Electrical lighting, heating and motor applications.(k2)		
		CO3	understand energy use and process involved in steam boilers and know energy saving opportunities in various stages of steam generation. (k2)		
		CO4	understand the process involved in HVAC systems and refrigeration with special attention to energy savings. (K2)		
		CO5	know the definition, need and types of Energy audit and to understand cogeneration. (k2)		
		CO6	understand the economics involved in the implementation of energy audit recommendations and cash flow studies in IRR and life cycle costing and apply the economic principles in case studies.(K2)		

# 8. Set Target levels for Attainment of Course Outcomes:

Assessment	Attainment Level							
Tool	3	2	1	0				
	More than 70% of	More than 60% and up	From50% andup to	Less than 50%of				
	students scoring target	to 70% of students	60% of students	students scoring				
CIE	value	scoring target value	scoring target value	target value				
	More than 70% of	More than 60% and up	From50% andup to	Less than 50% of				
	students scoring target	to 70% of students	60% of students	students scoring				
ESE	grade	scoring target grade	scoring target grade	target grade				
	More than 70% of	More than 60% and up	From 50% andup to	Less than 50%of				
Course Exit Survey	students scoring target value	to 70% of students scoring target	60% of students scoring target	students scoring target value				

# 9. Set Target level for Attainment of Program Outcomes:

The procedure for setting PO target has been decided as follows:

For every course, CO is to be mapped with each program outcome (PO) based on the relative significance. The average value of these matrix entries for each course is to be calculated up to two decimal points. Similar procedure is to be carried out for all courses and the final PO target for each PO, (PO1 to PO12) to be computed as the aggregate average of respective course wise PO averages (to be calculated up to two decimal points)

## **10.Course Attainment Levels:**

ATTAINMENT LEVELS						
70	3					
60	2					
50	1					
	0					
Direct	CIE	70				
Attainment	End Semester Examination	30				
Со	Direct	80				
Attainment	Indirect	20				

# **11.Program attainment Level:**

- a. The PO attainment is based on the average attainment level of corresponding courses (Direct Method) and programme exit survey, (Indirect method);
- b. The PO attainment levels are defined / set as stated below based on the recommendation from the DAC (Department Advisory Committee);
  - i. Level-1: Greater than 15% and less than 30% (15%>30%)- Poor
  - ii. Level-2: 30%>50%-Average
  - iii. Level-3: 50%>65%-Good
  - iv. Level-4: 65%>85%-Very Good
  - v. Level-5: 85% or more -Excellent
- c. The PO attainment target level is set/defined (say, Level-4). It implies that, the department is aiming at minimum level-4 (very good) in the performance of abilities by the graduates. Based upon the results of attainment, the remedial measures are taken;
- d. PO Attainment= 80% (Average attainment level by direct method) + 20% (Average attainment level by indirect method).

# 12. The Results of CO Attainment:

Course	CO'S	Course Title	Target	Attainment	Fully	Remedial measures
Code			level		Attained/Not attained	
	CO1		3	2.16	NOT ATTAINED	PROVIDING QUESTION PAPER BANK
	CO2		3	2.24	NOT ATTAINED	VIDEO LECTURES
Be 110	CO3	Engineering graphics	3	3	ATTAINED	
	CO4		3	3	ATTAINED	
	CO5		3	3	ATTAINED	
	C06		3	2.8	NOT ATTAINED	NPTEL LECTURES
	CO1		3	1.32	NOT ATTAINED	REMEDIAL classes
	CO2		3	2.16	NOT ATTAINED	
PH 100	CO3	Engineering Physics	3	1.88	NOT ATTAINED	
	CO4		3	2.44	NOT ATTAINED	
	CO5		3	3	ATTAINED	

## Table No. 1.0: CO Attainment Level
	C06		3	2.16	NOT ATTAINED	PROVIDING QUESTION PAPER BANK
EE 205	CO1	DC Machines and Transformer	3	1.44	NOT ATTAINED	VIDEO LECTURES
	CO2		3	0.6	NOT ATTAINED	NPTEL LECTURES
	CO3		3	1.44	NOT ATTAINED	REMEDIAL MEASURES
	CO4		3	0.6	NOT ATTAINED	
	CO5		3	2.28	NOT ATTAINED	
	C06		3	2.28	NOT ATTAINED	
	CO1	LIFE SKILS	3	2.52	NOT ATTAINED	
HS 210	CO2		3	2.52	NOT ATTAINED	
	CO3		3	2.52	NOT ATTAINED	
	CO1	PGTP	3	2	NOT ATTAINED	
	CO2		3	2.28	NOT ATTAINED	
FF 204	CO3		3	2.28	NOT ATTAINED	
EE 301	CO4		3	2.28	NOT ATTAINED	
	CO5		3	2.28	NOT ATTAINED	
	C06		3	0.6	NOT ATTAINED	
	CO1		3	2.52	NOT ATTAINED	
	CO2		3	1.12	NOT ATTAINED	
	CO3	Bio medical	3	2.24	NOT ATTAINED	
EE 372	CO4	Instrumentation	3	2.52	NOT ATTAINED	
	CO5		3	2.52	NOT ATTAINED	
	C06		3	2.24	NOT ATTAINED	
	CO1		3	1.44	NOT ATTAINED	
EE 402	CO2		3	1.44	NOT ATTAINED	
EE 403	CO3	GENERATION AND SWART GRIDS	3	1.44	NOT ATTAINED	
	CO4		3	2	NOT ATTAINED	

	CO5		3	1.44	NOT ATTAINED	
	C06		3	1.44	NOT ATTAINED	
EE 474	CO1	ENERGY MANAGEMENT AND AUDITING	3	1.68	NOT ATTAINED	
	CO2		3	1.68	NOT ATTAINED	
	CO3		3	1.68	NOT ATTAINED	
	CO4		3	1.68	NOT ATTAINED	
	CO5		3	1.68	NOT ATTAINED	
	C06		3	2.52	NOT ATTAINED	

## **13.The Results of PO Attainment:**

#### Table No. 2.0 PO Attainment Level

#### PO/PSO **Description of PO/PSO** Attainment Fully Remedial Target number level level attained/ Measures Not Attained PO1 Engineering knowledge: 1.95 2.52 NOT INDUSTRIAL ATTAINED VISIT NOT INDUSTRIAL PO2 1.44 1.88 2. Problem analysis: ATTAINED TRAINING PO3 1.13 1.45 NOT INVITED TALKS 3. Design/development of solutions: ATTAINED PO4 4. 1.07 1.35 NOT WEBINAR Conduct investigations of complex problems: ATTAINED PO5 1.27 1.47 NOT CO-5. Modern tool usage: ATTAINED CURRICULAR ACTIVITIES PO6 6. The engineer and society: NOT 1.46 1.63 ATTAINED **PO7** 1.32 1.3 ATTAINED 7. Environment and sustainability: **PO8** 1.23 1.5 NOT 8. Ethics: ATTAINED **PO9** 1.74 NOT 2.04 9. Individual and team work: ATTAINED

### 2018-22 BATCH

PO10	10. <u>Communication:</u>	1.58	1.85	NOT
				ATTAINED
PO11	11 Project management and finance.	1.2	1.33	NOT
	11. <u>Hoject management and mance.</u>			ATTAINED
PO12	12 Life-long learning:	1.27	1.63	NOT
	12. <u>Enc-long learning.</u>			ATTAINED
PSO1	Apply knowledge of mathematics, science	1.7	2.17	NOT
	and engineering to design, commission and			ATTAINED
	maintain various types of electrical systems			
	and address challenges in the field.			
PSO2	Derive sustainable solutions to complex	1.63	2.08	NOT
	electrical engineering problems that meet			ATTAINED
	the specified needs with ethical, social and			
	environmental considerations.			
PSO3	Adapt to changing work culture with ability	0.91	1.09	NOT
	for lifelong learning			ATTAINED
	for melong learning.			

## 14. Planned Actions for Course Attainment:

PROVIDING QUESTION PAPER BANK	ζ
VIDEO LECTURES	
NPTEL LECTURES	
REMEDIAL MEASURES	

# **15.Planned Actions for Program Outcome Attainment:**

INDUSTRIAL VISIT
INDUSTRIAL TRAINING
INVITED TALKS
WEBINAR
<b>CO-CURRICULAR ACTIVITIES</b>

CYCLE 1 - NAAC ACCREDITATION 2023

CYCLE 1 - NAAC ACCREDITATION 2023