

SYLLABUS

B. Tech.

CIVIL ENGINEERING

2024 SCHEME

SEMESTER S1

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

Course Code	24SJGYMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems.
- 2. To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling students to analyze and model dynamic systems encountered in engineering disciplines effectively.

Module	Syllabus	Contact
No.	Description	Hours
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9

2	Homogeneous linear ODEs of second order, Superposition principle, General solution, Homogeneous linear ODEs of second order with constant coefficients (Method to find general solution, solution of linear Initial Value Problem). Non-homogeneous ODEs (with constant coefficients) - General solution, Particular solution by the method of undetermined coefficients (Particular solutions for the functions $k e^{\gamma x}, k x^n, k c o s \omega x, k s, k e \alpha x c o s \omega x, k e \alpha x s i n \omega x),$ Initial value Problem for Non-Homogeneous Second order linear ODE(with constant coefficients), Solution by variation of parameters (Second Order). (Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	9
3	Laplace Transform, Inverse Laplace Transform, Linearity property, First shifting theorem, Transform of derivatives, Solution of Initial value problems by Laplace transform (Second order linear ODE with constant coefficients with initial conditions at t = 0 only), Unit step function, Second shifting theorem, Dirac delta function and its transform (Initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9
4	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier series (Dirichlet's conditions), Fourier series of 2π periodic functions, Fourier series of $2l$ periodic functions, Half range sine series expansion, Half range cosine series expansion. (Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant topics from section 10.8)	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	К3
CO3	Compute Laplace transform and apply it to solve ODEs arising in engineering.	К3
CO4	Determine the Taylor series and evaluate Fourier series expansion for different periodic functions and to apply in engineering problems.	К3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10th edition,2016		
2	Calculus	H.Anton,I.Biven, S.Davis	Wiley	12th edition,2024		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15th edition, 2023		
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017		
	Elementary Linear Algebra	Howard Anton, ChrisRorres	Wiley	11th edition, 2019		
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021		
	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023		
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/104/111104031/			
3	https://archive.nptel.ac.in/courses/111/106/111106139/			
4	https://archive.nptel.ac.in/courses/111/101/111101164/			

SEMESTER S1/S2 PHYSICS FOR PHYSICAL SCIENCE AND LIFE SCIENCE

Course Code	24SJGCPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and impart this knowledge in Physical Science and Life Science disciplines.
- 2. To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- 3. To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module	Syllabus	Contact
No.	Description	Hours
1	Laser & Fibre Optics Optical processes – Absorption-Spontaneous emission and stimulated emission, Principle of laser - conditions for sustained lasing – Population inversion- Pumping- Metastable states, Basic components of laser - Active medium - Optical resonant cavity, Construction and working of Ruby laser and CO ₂ laser, Construction and working Semiconductor laser (qualitative), Properties of laser, Applications of laser. Optic fibre -Principle of propagation of light, Types of fibres-Step index and Graded index fibres - Multimode and single mode fibers, Acceptance angle, Numerical aperture – Derivation, Applications of optical fibres - Fibre optic communication system (block diagram)	9

	Interference and Diffraction Introduction, Principle of super position, Constructive and destructive interference, Optical path, Phase difference and path difference, Cosine law- reflected system- Condition for	
2	constructive and destructive interference, Colours in thin films, Newton's Rings-Determination of refractive index of transparent liquids and wavelength, Air wedge- Measurement of thickness of thin sheets.	9
	Diffraction-types of diffraction, Diffraction due to a single slit, Diffraction grating — Construction - grating equation, Dispersive and Resolving Power(qualitative).	
	Quantum Mechanics	
3	Introduction, Concept of uncertainty and conjugate observables (qualitative), Uncertainty principle (statement only), Application of uncertainty principle- Absence of electron inside nucleus - Natural line broadening, Wave function – properties - physical interpretation, Formulation of time dependent and time independent Schrodinger equations, Particle in a one-dimensional box - Derivation of energy eigen values and normalized wave function, Quantum Mechanical Tunnelling (qualitative)	9
	Waves & Acoustics	
4	Waves- transverse and longitudinal waves, Concept of frequency, wavelength and time period (no derivation), Transverse vibrations in a stretched string- derivation of velocity and frequency - laws of transverse vibration.	9
•	Acoustics- Reverberation and echo, Reverberation time and its significance - Sabine's Formula, Factors affecting acoustics of a building. Ultrasonics- Piezoelectric oscillator, Ultrasonic diffractometer, SONAR, NDT-Pulse echo method, medical application-Ultrasound scanning (qualitative)	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment		Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO	Apply the comprehended knowledge about laser and fibre optics in various engineering applications.	К3					
CO	Apply the phenomena of interference and diffraction of light and gain practical knowledge to correlate theoretical studies.	К3					
CO	Describe the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	K2					
CO	Apply the knowledge of waves and acoustics in non-destructive testing and in acoustic design of buildings.	К3					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2						1	1		2
CO2	3	2						1	1		2
CO3	3										2
CO4	3	2						1	1		2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	A Textbook of Engineering Physics	M N Avadhanulu, P G Kshirsagar & TVS ArunMurthy	S Chand & Co.	2 nd Edition, 2019					
2	Engineering Physics	H K Malik, A.K.Singh,	McGraw Hill Education	2 nd Edition, 2017					
3	Optics	Ajoy Ghatak	Mc Graw Hill Education	6 th Edition, 2017					

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s Pu		Edition and Year				
1	Engineering Physics	G Vijayakumari	Vikas Publications	8 th Edition, 2014				
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6th Edition 2003				
3	Engineering Physics	Aruldhas G.	PHI Pvt. Ltd	2 nd Edition, 2015				
4	Fiber Optic Communications	Gerd Keiser	Springer	2021				
5	A Text Book of Engineering physics	I. Dominic, A. Nahari	OWL Publications	2 nd Edition, 2016				
_ h	Advanced Engineering Physics	Premlet B	Phasor Books					
7	Engineering Physics	Rakesh Dogra	Katson Books	1 st Edition, 2019				

Video Links (NPTEL, SWAYAM)					
Module No	Link ID				
1	https://nptel.ac.in/courses/115102124 https://nptel.ac.in/courses/104104085				
2	https://nptel.ac.in/courses/115105537				
3	https://nptel.ac.in/courses/115102023 https://nptel.ac.in/courses/115101107				
4	https://nptel.ac.in/courses/112104212 https://nptel.ac.in/courses/124105004				

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

i. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

ii. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

iii. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

Experiment No.	Experiments (Minimum 10 Experiments)
1	Optical fiber characteristics- Measurement of Numerical aperture.
2	Determination of wavelength of Laser using diffraction grating.
3	Measure the wavelength of Laser using diffraction grating.
4	Determination of wavelength of a monochromatic light using Newton's Rings method.
5	CRO basics-Measurement of frequency and amplitude of wave forms.
6	CRO- Lissajous Patterns
7	Determination of resolving power and dispersive power of grating.
8	Wheatstone Bridge.
9	Solar Cell- I V and Intensity Characteristics.
10	Melde's experiment- Frequency calculation in Transverse and Longitudinal Mode.
11	Determination of diameter of wire or thickness of thin sheet using Air wedge method.
12	Determination of wavelength and velocity of ultrasonic waves using ultrasonic diffractometer.
13	Determination of particle size of lycopodium powder.
14	Determination of slit width (diffraction due to a single slit).
15	Photo diode - V-I Characteristics

SEMESTER S1/S2

CHEMISTRY FOR PHYSICAL SCIENCE

Course Code	24SJGCCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on quality of life.

Module No.	Syllabus Description	Contact Hours
1	Fuels: Calorific value – HCV and LCV – Experimental determination of calorific value of solid fuels. Analysis of coal – Proximate analysis- Octane &Cetane Number. Biofuels- Biodiesel-Green Hydrogen. Lubricants: Classification - Solid, Semisolid and Liquid lubricants. Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud Point, Pour Point & Aniline Point. Cement: Manufacture of Portland cement – Theory of setting andhardening of cement. Nanomaterials: Classification based on Dimension & Materials- Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials – Supercapacitor Materials - Carbon Nanotubes, Fullerenes & Graphene – structure, properties & application. Polymers: ABS & Kevlar - Synthesis, properties and applications. Conducting Polymers- Classification – Application.	9
2	Electrochemical Cell- Electrode potential- Nernst equation for single electrode and cell (Numerical problems)- Reference electrodes – SHE & Calomel electrode –Construction and Working - Electrochemical series - Applications – Glass Electrode & pH Measurement- Conductivity- Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel cell (acid electrolyte only) construction and working. Corrosion –Electrochemical corrosion mechanism (acidic & alkaline medium) Galvanic series - Corrosion control methods - Cathodic Protection - Sacrificial anodic protection and impressed current cathodic protection – Electroplating of copper - Electroless plating of copper.	9

	Instrumental Methods of Analysis	
3	Molecular Spectroscopy: Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of Conjugation in absorption maxima - Instrumentation-Applications - Vibrational spectroscopy - Principle- Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -Applications Thermal analysis: -TGA- Principle, instrumentation (block diagram) and applications - TGA of CaC ₂ O ₄ .H ₂ O and polymers. DTA- Principle, instrumentation (block diagram) and applications - DTA of CaC ₂ O ₄ .H ₂ O. Chromatography-Gas Chromatography-Principle-Instrumentation- Application - Analysis of chemical composition of exhaust gases. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications.	9
4	Water characteristics - Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water - Degree of hardness (Numerical) Water softening methods-Ion exchange process - Principle, procedure and advantages. Reverse osmosis - principle, process and advantages Water disinfection methods - chlorination- Break point chlorination, ozone and UV irradiation. Dissolved oxygen (DO), BOD and COD- Definition & Significance Waste Management: Air Pollution - Sources & Effects - Greenhouse Gases - Ozone depletion. Control methods. Sewage water treatment- Primary, Secondary and Tertiary - Flow diagram - Trickling filter and UASB process. Solid waste - disposal methods - Composting, Landfill & Incineration.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, Each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the use of various engineering materials in different industries.	K2
CO2	Explain the Basic Concepts of Electrochemistry and Corrosion to explore the possible applications in various engineering fields.	K2
CO3	Use appropriate analytical techniques for different engineering materials	К3
CO4	Outline various water treatment and waste management methods	К2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	3									2
CO3	3	3									2
CO4	3	3				2					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018			
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018			
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005			
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995			
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017			
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015			
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition,1996			
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014			
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024			
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008			

	Video Links (NPTEL, SWAYAM)					
Sl No.	Link ID					
1	https://archive.nptel.ac.in/courses/104/106/104106137/ https://archive.nptel.ac.in/courses/113/105/113105102/ https://archive.nptel.ac.in/courses/113/104/113104082/ https://www.youtube.com/watch?v=BeSxFLvk1h0					
2	https://archive.nptel.ac.in/courses/113/104/113104102/ https://archive.nptel.ac.in/courses/104/105/104105124/ https://archive.nptel.ac.in/courses/105/104/105104157/					

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

1. Mark distribution

i. Preparation and Pre-Lab Work (2 Marks)

Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.

Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.

Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.

Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

i. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

ii. Result (2 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.

iii. Viva Voce (1 Marks)

- Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments

Minimum 10 experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
5	Synthesis of polymers a) Urea-formaldehyde resin b) Phenol-formaldehyde resin
6	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in solution
7	Determination of molar absorptivity of a compound (KMnO ₄ or any water-soluble food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S1
ENGINEERING MECHANICS

Course Code	24SJGCEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- The course aims to enable students to analyse and solve fundamental mechanics problems

Module No.	Syllabus Description	Contact Hours
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL only)	10
	Force systems: rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D	
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas – moment of inertia - parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of	10
	inertia-ring and disc	
3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle.motion on horizontal and inclined surfaces, motion of connected bodies	8
4	Curvilinear translation - equations of kinematics projectile motion (solution starting from differential equations) Rotation – kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis –rotation under a constant moment	8

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1(Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Recall principles and theorems related to rigid body mechanics and describe the components of forces acting on the rigid body.	К3
CO2	Understand and apply the principles of friction and compute the centroid and moment of inertia of various composite areas.	К3
CO3	Understand and apply the fundamental principles of rigid body dynamics in particular rectilinear translation.	К3
CO4	Understand and solve problems on curvilinear and rotation motion.	К3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2									
CO2	3	3									
CO3	3	3									
CO4	3	3									

	Text Books								
Sl. No	Title of the Book	Name of the Publisher	Edition and Year						
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017					
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015					
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall Of India.	4 th Edition 2008					
4	Textbook of Engineering Mechanics	R. K. Bansal	Laxmi publications pvt ltd.	4 th Edition 2016					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020					
2	Engineering Mechanics	Kraige	PHI Learning	2011					

Video Links (NPTEL, SWAYAM)						
	Link ID					
1	https://nptel.ac.in/courses/112106286					

SEMESTER S1
INTRODUCTION TO MECHANICAL ENGINEERING & CIVIL ENGINEERING

Course Code	24SJGCEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4-0-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand thermodynamic cycles and working of IC engines.
- 2. Understand the refrigeration cycles and psychrometric concepts.
- 3. Understand the relevance of civil engineering and its various disciplines.
- **4.** Describe the relevance of various building codes and types of buildings as per NBC.
- 5. Understand different building components and building materials.

Module No.	Syllabus Description	Contact Hours
1	General introduction to Mechanical Engineering: Thermodynamic cycles -Carnot Cycle -Derivation of efficiency (problems on efficiency) Otto, Diesel cycles (no derivation of efficiency and problems). IC Engines: CI & SI Engines, working of 2-Stroke & 4-Stroke engines. Listing the parts of IC Engines. Concept of CRDI, MPFI and hybrid engines. Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Psychrometric chart, Cooling and dehumidification, Layout of central air conditioning systems.	9

2	Pumps: Classification of pumps, Description about working with sketches of: Reciprocating pump, Centrifugal pump. Classification of Hydraulic Turbines. Gears: Different type of gears and its applications (spur, helical, bevel, worm and worm wheel), List types of clutches and their use, Bearings and their classification (Journal bearing and ball bearing) Manufacturing Process: Sand Casting, Forging, Rolling, Extrusion. Metal Joining Processes: List types of welding, Description with sketches of Arc Welding, SMAW, Soldering and Brazing and their applications. Machining processes: Description and operations performed on Lathe, Drilling machine, Milling machine, CNC machine, 3D printing.	9
3	General Introduction to Civil Engineering: Relevance of Civil Engineering in the overall infrastructural development of the country. Brief introduction to major disciplines of Civil Engineering like Structural Engineering, Geo-technical Engineering, Transportation Engineering, Water Resources Engineering and Environmental Engineering. Introduction to buildings: Types of buildings according to character of occupancy as per NBC, Load bearing and non-load bearing building structures, components of a residential building and their functions (concept only). Selection of site for a residential building. Building Area Definitions: Built up area, Plinth area, Floor area, Carpet area and Floor area ratio of a building as per KBR. Building rules and regulations: Relevance of NBC, KBR & CRZ norms (brief discussion of relevance only).	9
4	Conventional construction materials: Brick, stone, sand, cement and timber- Classifications, Qualities, Tests and Uses of construction materials. Cement concrete: Constituent materials, properties and types. Tests on fresh and hardened concrete - slump test, cube compressive strength as per IS Codes. Steel: Structural steel sections and steel reinforcements – types and uses. Soil-Origin of soil-weathering of rocks, types of weathering	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Learn the applications of thermodynamics through IC engines and refrigeration systems.	K2
CO2	Understand the various hydraulic machines, power transmission elements and manufacturing processes adapted by mechanical engineers.	К2
CO3	Understand the relevance of civil engineering, its various disciplines, relevance of various building codes and types of buildings	K2
CO4	Understand different building components and building materials.	K2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									
CO2	3										2
CO3	3						2				2
CO4	3										2

		Text Books						
Sl. No	Title of the Book	Name of the Author/s		ame of the Publisher	Editio	n and Year		
1	Basic Mechanical Engineering	Pravin Kumar	Pearson Education		Pearson Education		1 st Ed	lition,2013
2	A Textbook of Basic Mechanical Engineering	R.K. Rajput	P	Laxmi aublications	3 rd Ec	lition,2017		
3	Elements of Mechanical Engineering	K.P. Roy, S.K. Hajra Choudhury, A.K. Hajra Choudhury		Media Promoters & Publishers Pvt. Ltd.		ed Edition, 2012		
4	Fundamentals of Mechanical Engineering	G.S. Sawhney	PHI Learning Pvt. Ltd. 1st Edition		lition,2013			
5	Essentials of Civil Engineering	Dalal K R	Pub	Charotar Publishing house		lition 2012		
6	Engineering Materials (Material Science)	Rangwala S C		Charotar Publishing House Pvt Limited		dition2019		
7	Building Materials	Duggal S K		New Age International		lition2019		
		Reference Books	S					
Sl. No	Title of the Book	Name of the Author/s Name of the Publisher			Edition and Year			
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi and M. A Masrur			z Sons	2nd Edition, 2017		

2	Automotive Engineering Fundamentals	Richard Stone and Jeffrey K. Ball	SAE International	1 st Edition, 2004
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David W. Rosen, and Brent Stucker	Springer	2 nd Edition, 2015
4	Heating, Ventilating, and Air Conditioning Analysis and Design	Faye C. McQuiston, Jerald D. Parker, and Jeffrey D. Spitler	John Wiley & Sons	6 th Edition, 2005
5	Materials for Civil and Construction Engineering	Mamlouk, M.S.,and Zaniewski, J.P	Pearson Publishers	4 th Edition, 2017
6	Building Construction	Rangwala, S.C and Dalal, KB	Charotar Publishing house	34 th Edition 2022
7	Construction Technology Vol. I to IV	Chudley, R	Longman group, England Course Plan	2 nd Edition 2014
8	Building Construction Volumes1to4	Mckay, W.B.and Mckay,J.K	Pearson India Education Services	5 th Edition
9	Engineering Geology	Duggal S. K., Pandey H.K. and Rawat N,	Mcgraw Hill Education, New Delhi	1 st Edition 2017
10	Latest Building codes and rel	ated rules and regulation	ns.	

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/112/105/112105123/ https://nptel.ac.in/courses/112/106/112106133/ https://nptel.ac.in/courses/112/105/112105129/						
2	https://nptel.ac.in/courses/112/105/112105171/ https://nptel.ac.in/courses/112/105/112105268/ https://archive.nptel.ac.in/courses/112/107/112107145						
3	https://archive.nptel.ac.in/courses/105/106/105106201/						
4	https://archive.nptel.ac.in/courses/105/106/105106206/						

SEMESTER S1

ALGORITHMIC THINKING WITH PYTHON

(Common to All Branches)

Course Code	24SJICEST105	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- 2. To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

Modul e No.	Syllabus Description	Contact Hours
1	PROBLEM-SOLVING STRATEGIES:- Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward). THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution. ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators and their precedence.	7

	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition (for, while, repeat-until loops), Sample problems* FLOWCHARTS**:- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page connector.	
2	* - Evaluate an expression, d=a+b*c, find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits). ** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for the sample problems listed earlier may be discussed	9
3	SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop. Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using Numpy library). DECOMPOSITION AND MODULARIZATION*:- Problem decomposition as a strategy for solving complex problems, Modularization, Motivation for modularization, Defining and using functions in Python, Functions with multiple return values. RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, Sample problems - Finding the nth Fibonacci number, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum of digits of a positive number **. The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of n>=3 integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits). ** Not to be limited to these exercises. More can be worked out if time permits.	10

4	COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING (Introductory diagrammatic/algorithmic explanations only. Analysis not required):- Brute-force Approach - Example: Padlock, Password guessing Divide-and-conquer Approach - Example: The Merge Sort Algorithm - Advantages of Divide and Conquer Approach - Disadvantages of Divide and Conquer Approach Dynamic Programming Approach - Example: Fibonacci series Recursion vs Dynamic Programming Greedy Algorithm Approach - Example: Given an array of positive integers each indicating the completion time for a task, find the maximum number of tasks that can be completed in the limited amount of time that you have Motivations for the Greedy Approach - Characteristics of the Greedy Algorithm Greedy Algorithms vs Dynamic Programming Randomized Approach - Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting n different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one? - Example 2: n people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty and returns the n hats randomly back to each person. What is the expected number of people who get back their hats	10
---	---	----

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Execution of	Internal Examination-1 (Written Examination)	(Written	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Utilize computing as a model for solving real-world problems.	К2				
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3				
CO3	Utilize effective algorithms to solve the formulated models and translate algorithms into executable programs.	К3				
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К3				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2		2			2	2		3
CO2	3	3	2	2	2				2		3
CO3	3	3	3	2	3			2	2		3
CO4	3	3	2	2				2	2		3

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	2012					
2	How to Solve It: A NewAspect of Mathematical Method	George Pólya	Princeton University Press	2015					
3	Creative Problem Solving:An Introduction	Donald Treffinger., ScottIsaksen, Brian Stead- Doval	Prufrock Press	2005					
4	Psychology (Sec. Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W.,Lacombe, A., Lovett, M.,& Perlmutter, M	H5P Edition	2021					
5	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2018					
6	Introduction to Computationand Programming using Python	Guttag John V	РНІ	2/e., 2016					
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024					
8	Computational Thinking: A Primer for Programmers and Data Scientists	G Venkatesh Madhavan Mukund	Mylspot Education Services Pvt Ltd	2020					

Video Links (NPTEL, SWAYAM)	
Module No.	Link ID
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify three ill-defined problems and well-defined problems
- 2. Identify five use cases for Trial and error, Heuristics, backtracking, and Means-ends analysis.
- 3. Use a diagram to solve the Tower of Hanoi for three pegs with the minimum number of moves.
- 4. Evaluate different algorithms discussed earlier based on their efficiency by counting the number of steps.
- 5. A recursive function that takes a number and returns the sum of all the numbers from zero to that number.

- 6. A recursive function that takes a number as an input and returns the factorial of that number.
- 7. A recursive function that takes a number 'n' and returns the nth Fibonacci number.
- 8. A recursive function that takes an array of numbers as input and returns the product of all the numbers in the array.
- 9. A program to reverse the contents of an **1D** array without using a second array.
- 10. To register for the end-semester examination, you need to log into the University portal with your credentials. Write a program to validate the credentials. Assume that the usernames are stored in an array of strings called **USERNAME** and the corresponding passwords are stored in another array of strings called **PASSWORD** such that **password[i]** is the password for the user **username[i]**.
- 11. You are given a list and your task is to divide it to make two smaller lists. The sub lists should be made from alternate elements in the original list. So if the original list is $\{5,1,4,12,6\}$, then one sub list should be $\{5,4,6\}$ and the other should be $\{1,12\}$.
- 12. A program that takes three points in a 2D plane and determines whether they are collinear. Two pairs of points are collinear if they have the same slope.

Lab Experiments

- 1. Simple desktop calculator using Python. *Only the five basic arithmetic operators*.
- 2. Create, concatenate, and print a string and access a sub-string from a given string.
- 3. Familiarize time and date in various formats (Eg. "Thu Jul 11 10:26:23 IST 2024").
- 4. Write a program to create, append, and remove lists in Python using NumPy.
- 5. Program to find the largest of three numbers.
- 6. Convert temperature values back and forth between Celsius (c), and Fahrenheit (f). [Formula: c/5 = f-32/9]
- 7. Program to construct patterns of stars (*), using a nested for loop.
- 8. A program that prints prime numbers less than N.
- 9. Program to find the factorial of a number using Recursion.
- 10. Recursive function to add two positive numbers.
- 11. Recursive function to multiply two positive numbers.
- 12. Recursive function to find the greatest common divisor of two positive numbers.
- 13. A program that accepts the lengths of three sides of a triangle as inputs. The program should output whether or not the triangle is a right triangle (Recall from the

- Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 14. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 15. Program to check whether the given number is a valid mobile number or not using functions.

Rules: Every number should contain exactly 10 digits. The first digit should be 7 or 8 or 9

- 16. Input two lists from the user. Merge these lists into a third list such that in the merged list, all even numbers occur first followed by odd numbers. Both the even numbers and odd numbers should be in sorted order.
- 17. Write a program to play a sticks game in which there are 16 sticks. Two players take turns to play the game. Each player picks one set of sticks (needn't be adjacent) during his turn. A set contains 1, 2, or 3 sticks. The player who takes the last stick is the loser. The number of sticks in the set is to be input.
- 18. Suppose you're on a game show, and you are given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat. He then asks, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

(source:https://en.wikipedia.org/wiki/Monty_Hall_problem#:~:text=The%20Monty% 20Hall%20pr oblem%20is,the%20American%20Statistician%20in%201975.)

SEMESTER S1 ENGINEERING WORKSHOP

Course Code	24SJGCESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-2-0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To enable the student to familiarize various tools, measuring devices, practices and different methods employed in the industry.
- 2. To enable the students to apply this experience while developing product/project for the benefit of society.

for the benefit of society.				
Expt. No.	Experiments (Minimum 12 Exercises)			
1	General: Introduction to workshop practice, Safety precautions, Shop floor ethics, and Basic First Aid knowledge. Study of mechanical and measurement tools, components and their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc. and accessories (b) bearings, seals, O-rings, circlips, keys etc.(c)Vernier Calipers, Height Gauge, Depth Gauge, Micrometers, Bevel Protractor etc.			
2	Carpentry: Understanding carpentry tools and knowledge of at least one model 1. T –Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints			
3	Foundry: Understanding of foundry tools and knowledge of at least one model 1. Bench Moulding 2. Floor Moulding 3. Core making 4. Pattern making			
4	Sheet Metal: Understanding sheet metal working tools and knowledge of at least one model 1. Cylindrical shape 2. Conical shape 3. Prismatic shaped job from sheet metal			
5	Fitting: Understanding the tools used for fitting and knowledge of at least one model 1. Square Joint 2. V- Joint 3. Male and female fitting			
6	Plumbing: - Understanding plumbing tools and pipe joints, along with practicing one exercise on joining pipes using a minimum of three types of pipe joints			
7	Smithy: - Understanding the tools used in smithy. Demonstrating the forgeability of different materials (MS, Al, alloy steel and cast steels) in both cold and hot states. Observing the qualitative difference in the hardness of these materials. One exercise on smithy (Square prism).			

8	Welding: Understanding welding equipment and practicing at least one welding technique, such as making joints using electric arc welding. Bead formation in horizontal, vertical and overhead positions
9	Rolling: - Objective of rolling, rolling process, practical on two high rolling mill
10	Electroplating: -Electroplating a given job
11	Metrology: Common measuring instruments used in workshop, experiments to find the angle of a dovetail, angle of a taper and the radius of a circular surface. Introduction to instruments Vernier Bevel Protractor, Vernier Depth Gauge, Vernier Height Gauge.
	Assembly: Demonstration only Dissembling and assembling of
12	1. Cylinder and piston assembly 2. Tail stock assembly 3. Bicycle 4. Pump or any other machine
	Machines: Demonstration of the following machines:
13	Shaping and slotting machine; Milling machine; Grinding Machine; Lathe; Drilling Machine.
	Modern manufacturing methods (Fab lab/IDEA Lab - Demonstration only):
14	Power tools, CNC machine tools, 3D printing, Soft Materials cutting using special machines
15	Use of proper Personal Protective Equipments. Measurements using Tape, Ruler, Vernier calipers, screw gauge
16	Measuring the area of a plot with an irregular boundary using a chain and cross staff
17	Measuring the area of a building using Distomat
18	Finding the level difference between two points using dumpy level
19	Onsite quality assessment of brick, and cement
20	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum length of 60 cm using English bond. Check the verticality of the wall
21	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum length of 60 cm using Flemish bond. Check the verticality of the wall
22	Estimate the number of different types of building blocks needed to construct the walls of a room measuring 2m x 3m, accounting for standard-sized doors and windows.
23	Setting out of a two roomed building using thread, tape and water tube levelling.

24	Conduct a market study to understand the types, prices, and general specifications of at least three materials available in the market (such as bricks, cement, aggregates, steel, plumbing items, fixtures, welding rods, fasteners etc.).
25	Studying the tools and testing instruments for electrical works. Wiring a light or a fan circuit using one way and two-way switch.
26	Familiarization/Application of testing instruments and commonly used tools in electronic works. [Multimeter, Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air soldering and desoldering station etc.]
Note: M complete	inimum of 12 experiments from among the 26 experiments listed, is to be d.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
Aiguilliii	i rogramming	Ծաւթաւ			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify workshop operations and instruments in accordance with the material and objects.	К3
CO2	Understand appropriate tools and instruments with respect to the workshop specializations.	К2
CO3	Apply various tools, measuring devices, practices and different methods employed in the industry.	К3
CO4	Examine the quality of common materials used in the industry.	КЗ
CO5	Conduct market study of various engineering materials and consumables available in the market.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3								2		2
CO2	3								2		2
СОЗ	3				2				2		3
CO4	3								2		3
CO5	3							2	3		3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mechanical Workshop Practice	K C John	PHI Learning	Edition 2 2010				
2	Engineering Materials	S C Rangwala	Charotar Publishing House Pvt Limited	Edition 43 2019				
3	Building Materials	S K Duggal	New Age International	Edition 6 2025				

1	Indian Practical Civil Engineering Handbook	Khanna P.N,	UBS Publishers Distributers (P) Ltd.	Year 2012
5	Building Construction	Arora S.P and Bindra	Dhanpat Rai	Edition 5
3	Building Construction	S.P	Publications	Year 2022

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	Elements of Workshop	S K Hajra Choudhury	MPP Media				
1	Technology Vol-1-	A K Hajra Choudhury	Promoters and	2008			
1	Manufacturing Processes	Nirjhar Roy	Publishers	2008			

Video Links (NPTEL, SWAYAM)			
Link ID			
https://archive.nptel.ac.in/courses/105/106/105106206/ https://archive.nptel.ac.in/courses/105/106/105106201/ https://archive.nptel.ac.in/courses/105/104/105104101/ https://archive.nptel.ac.in/courses/117/106/117106108/			

Continuous Assessment (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to all Groups)

Course Code	24SJICHWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Human Body Systems related to Physical activity and its functions: Respiratory System - Cardiovascular System. Musculoskeletal System and the Major Muscle groups of the Human Body. Quantifying Physical Activity Energy Expenditure and Metabolic equivalent of task (MET) Exercise Continuum: Light-intensity physical activity, Moderate – intensity physical activity, Vigorous -intensity physical activity. Defining Physical Activity, Aerobic Physical Activity, Anaerobic Physical Activity, Exercise and Health-Related Physical Fitness. FITT principle to design an Exercise programme Components of Health-related Physical Fitness: - Cardiorespiratory Fitness- Muscular strength- Muscular endurance- Flexibility- Body composition.	4

2	Concept of Health and Wellness: Health and wellness differentiation, Factors affecting health and wellness. Mental health and Factors affecting mental health. Sports and Socialization: Sports and character building - Leadership through Physical Activity and Sports Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet Carbohydrate & the Glycemic Index Animal & Plant - based Proteins and their Effects on Human Health Dietary Fats & their Effects on Human Health Essential Vitamins and Minerals	2
3	Lifestyle management strategies to prevent / manage common hypokinetic diseases and disorders - Obesity - Cardiovascular diseases (e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low back pain, Kyphosis, lordosis, flat foot, Knock knee) Meaning, Aims and objectives of yoga - Classification and importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types - Active Lifestyle and Stress Management Through Yoga Understanding on substance abuse and addiction - Psychoactive substances & its ill effects- Alcohol- Opioids- Cannabis - Sedative -Cocaine -Other stimulants, including caffeine -Hallucinogens -Tobacco -Volatile solvents.	4
4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains -Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	2

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method

(CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	K2
CO4	Explain the basics of first aid and describe common sports injuries	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1				2		3	3	3	2		2
CO2				2		3	2	2			2
CO3						3	3				2
CO4				2		3					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999			
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022			

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018	
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022	
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005	
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998	
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012	
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams &Wilkins	2010	

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.
Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20
Activity Evaluation	The Assignment / Presentation faculty handling the class will use the tests from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India Fitness Protocol and the evaluation will be based on the benchmark score received for the following tests: - V Sit Reach Test - Partial Curl Up - 30 seconds - Push Ups (Male) and Modified Push Up (Female) - Two (2) Km Run/Walk Students who achieve a total benchmark score of 8 across the aforementioned 4 tests will be awarded pass marks for activity evaluation. Students who score better will be awarded a maximum mark of 20.
Activity Evaluation - Special Circumstances	Physically challenged and medically unfit students can opt for an objective test to demonstrate their knowledge of the subjects taught. Based on their performance in the objective test, they will be awarded marks out of 20.
Activity Evaluation - Special Considerations - NCC	Students who enrolled themselves in the NCC during the course period (between the start and end dates of the program) and attended 5 college level parades will be awarded pass marks for activity evaluation. Students who attend more parades will be eligible for a maximum mark of 20 based on their parade attendance.

Tests to evaluated as per Benchmark Scores V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.
- 4. Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds How to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46

6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk How to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION

(Common to all Branches)

Course Code	24SJICHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 1. To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- **3.** To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.

- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1. Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-		
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	Connecting with group membersTime managementGantt Chart	
	Preparation of Gantt chart based on the time plan	SS	1	G	2		
	T 1						
	Take an online personality development test, self-reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their	L	1	I	2	 Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work- Compiling of ideas Mind mapping 	CO1

2.3	Role-storming exercise 2: Students assume the role of their teacher and write about the - Skills required as a B. Tech graduate, - Attitudes, habits, approaches required and activities to be practised during their B.Tech years, in order to achieve the set goals	SS	1	I	2		CO1
2.4	Discuss the skills identified through role storming exercise by each one within their own group and improvise the list of skills	L	1	G	2		CO1
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		CO1
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs/academia (at least 1 through LinkedIn)	SS	3	Ι	2	 Workplace awareness Listening Communication - interacting with people 	
4.2	Interact with them to understand their workplace details including • workplace skills					Networking through various media including LinkedIn	

	required					• Discussion in	
	• their work experience	SS	3	I	4	groups	
	 activities they have done to enhance their employability during their B. Tech years suggestions on the different activities to be done during B. Tech years Prepare a documentation of this 					 Report preparation Creativity Goal setting - Preparation of action plan 	CO2
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected by the individuals. Prepare the Minutes of the discussions	SS	3	G	2		CO2
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal		5	I	2		CO1
5 1	Select a real-life problem that requires a technical solution and list the study materials needed		6	G	2		CO3

	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	Ι	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	22	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise		7	G	3		CO3
	Prepare a report based on the problem- solving experience		7	G	2		CO4
6.1	Linkedin profile creation	SS	1	Ι	2		CO6
6.2	Resume preparation	SS	8	Ι	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	Ι	3	-	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
Q	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)		10	G	3	Diversity	CO2, CO5
9	Take online Interview skills development sessions like robotic interviews; self-reflect and report		10	I	2	• Interview skills	CO6

						_	
10	Take an online listening test, self- reflect and report		11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students		8	I/G	4	• English vocabulary	CO4
11.2	Activities to help students identify errors in English language usage		9	I/G	2	 English language skills Writing Presentation Group work Self-reflection 	CO4
11.3	Activity to help students identify commonly misspelled words, commonly mispronounced words and confusing words	L	10	I/G	2		CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	9.9	12	I	2		CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/ research work tried out in Kerala context by academicians/professionals/Govt.agencies/ research institutions/privateagencies/ NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media platforms Profile building 	CO2, CO4, CO5

12.2	Upload the video content to podcasting platforms or YouTube	12	G	1	CO5
12.3	Add the link of the podcast in their LinkedIn profile	12	G	1	CO5

Table 2. Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	 Hands-on sessions on day-to-day engineering skills and a self- reflection report on the experience gained: Drilling practice using electric hand drilling machines. Cutting of MS rod and flat using electric hand cutters. Filing, finishing and smoothening using electrically operated hand grinders. MS rod cutting using Hack saw by holding the work in bench wise. Study and handling different types of measuring instruments. Welding of MS, SS work pieces. Pipe bending practice (PVC and GI). Water tap fitting. Water tap rubber seal changing practice. Union and valves connection practice in pipes. Foot valve fitting practice. Water pump seal and bearing changing practice. 	24	Basic practical engineering skills	3
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
01	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	К2
	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K2
CO3	Develop thinking skills, problem-solving and decision-making skills	К3

CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K2
CO5	Develop the ability to create effective presentations through audiovisual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	К3
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	КЗ

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1									1		3
CO2					1		3		3		3
CO3		1	1		1				1		1
CO4					1				1		2
CO5					1	1			1		2
CO6					1				1		

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022				
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020				
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023				
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016				
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017				

6	Interchange	Jack C. Richards,	Cambridge	5th Edition
	E	With Jonathan Hull,	publishers	
		Susan Proctor		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016			
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018			
4	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017			
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023			
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004			

SEMESTER S2

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 2

Course Code	24SJGYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)	9
2	Double integrals, Reversing the order of integration in double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	

3	Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3)	
4	Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z=g(x, y)$, Flux integrals over surfaces of the form $z=g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8)	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, Each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	60
(8x3 =24marks)	 Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	К3
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	К3
CO3	Compute the derivatives and line integrals of vector functions and to learn their applications.	К3
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Calculus	H. Anton, I. Biven, S. Davis	Wiley	12th edition, 2024			

	Reference Books						
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year			
		Maurice D. Weir, Joel		th edition,			
1	Thomas' Calculus	Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 2023			

2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017
3	Advance Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10th edition, 2016
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023

	Video Links (NPTEL, SWAYAM)				
Module No.	Link II)				
1	1 https://nptel.ac.in/courses/111107108				
2	https://nptel.ac.in/courses/111107108				
3	https://nptel.ac.in/courses/111107108				
4	https://nptel.ac.in/courses/111107108				

SEMESTER S1/S2

PHYSICS FOR PHYSICAL SCIENCE AND LIFE SCIENCE

Course Code	24SJGCPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and impart this knowledge in Physical Science and Life Science disciplines.
- 2. To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- 3. To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Laser & Fiber Optics Optical processes – Absorption-Spontaneous emission and stimulated emission, Principle of laser - conditions for sustained lasing – Population inversion- Pumping- Metastable states, Basic components of laser - Active medium - Optical resonant cavity, Construction and working of Ruby laser and CO2 laser, Construction and working Semiconductor laser (qualitative), Properties of laser, Applications of laser. Optic fiber-Principle of propagation of light, Types of fibers-Step index and Graded index fibers - Multimode and single mode fibers, Acceptance angle, Numerical aperture –Derivation, Applications of optical fibers - Fiber optic communication system (block diagram)	9

		1
2	Interference and Diffraction Introduction, Principle of super position, Constructive and destructive interference, Optical path, Phase difference and path difference, Cosine law- reflected system- Condition for constructive and destructive interference, Colours in thin films, Newton's Rings-Determination of refractive index of transparent liquids and wavelength, Air wedge- Measurement of thickness of thin sheets. Diffraction-types of diffraction, Diffraction due to a single slit, Diffraction grating – Construction - grating equation, Dispersive and Resolving Power(qualitative).	9
3	Quantum Mechanics Introduction, Concept of uncertainty and conjugate observables (qualitative), Uncertainty principle (statement only), Application of uncertainty principle- Absence of electron inside nucleus - Natural line broadening, Wave function – properties - physical interpretation, Formulation of time dependent and time independent Schrodinger equations, Particle in a one- dimensional box - Derivation of energy eigen values and normalized wave function, Quantum Mechanical Tunnelling (qualitative)	9
4	Waves & Acoustics Waves- transverse and longitudinal waves, Concept of frequency, wavelength and time period (no derivation), Transverse vibrations in a stretched string- derivation of velocity and frequency - laws of transverse vibration. Acoustics- Reverberation and echo, Reverberation time and its significance - Sabine's Formula, Factors affecting acoustics of a building. Ultrasonics- Piezoelectric oscillator, Ultrasonic diffractometer, SONAR, NDT-Pulse echo method, medical application- Ultrasound scanning (qualitative)	9

Course Assessment Method

(CIE: 40 marks, ESE:60 marks)

Continuous Internal Evaluation Marks (CIE):

	Continuous Assessment			Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, Each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	60
(8x3 =24marks)	• Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply the comprehended knowledge about laser and fibre optics in various engineering applications.	К3
CO2	Apply the phenomena of interference and diffraction of light and gain practical knowledge to correlate theoretical studies.	К3
CO3	Describe the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics.	K2
CO4	Apply the knowledge of waves and acoustics in non-destructive testing and in acoustic design of buildings.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3										3
CO2	3										3
CO3	3										3
CO4	3	3									3
CO5	3	3			3			2			3

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	A Textbook of Engineering Physics	M N Avadhanulu, P G Kshirsagar & TVS Arun Murthy	S Chand & Co.	2 nd Edition, 2019	
2	Engineering Physics	H K Malik , A.K. Singh,	McGraw Hill Education	2nd Edition, 2017	
3	Optics	Ajoy Ghatak	Mc Graw Hill Education	6 th Edition, 2017	

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Engineering Physics	G Vijayakumari	Vikas Publications	8 th Edition, 2014	
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6th Edition 2003	
3	Engineering Physics	Aruldhas G.	PHI Pvt. Ltd	2 nd Edition, 2015	
4	Fiber Optic Communications	Gerd Keiser	Springer	2021	
5	A Text Book of Engineering physics	I. Dominic, A. Nahari	OWL Publications	2 nd Edition, 2016	
6	Advanced Engineering Physics	Premlet B	Phasor Books		
7	Engineering Physics	Rakesh Dogra	Katson Books	1 st Edition, 2019	

Video Links (NPTEL, SWAYAM)				
Module No	Link ID			
1	https://nptel.ac.in/courses/115102124 https://nptel.ac.in/courses/104104085			
2	https://nptel.ac.in/courses/115105537			
3	https://nptel.ac.in/courses/115102023 https://nptel.ac.in/courses/115101107			
4	https://nptel.ac.in/courses/112104212 https://nptel.ac.in/courses/124105004			

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- SkillProficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

Experiment No.	Experiments (Minimum 10 Experiments)
1	Optical fiber characteristics- Measurement of Numerical aperture.
2	Determination of wavelength of Laser using diffraction grating.
3	Measure the wavelength of Laser using diffraction grating.
4	Determination of wavelength of a monochromatic light using Newton's Rings method.
5	CRO basics-Measurement of frequency and amplitude of wave forms.
6	CRO- Lissajous Patterns
7	Determination of resolving power and dispersive power of grating.
8	Wheatstone Bridge.
9	Solar Cell- IV and Intensity Characteristics.
10	Melde's experiment- Frequency calculation in Transverse and Longitudinal Mode.
11	Determination of diameter of wire or thickness of thin sheet using Air wedge method.
12	Determination of wavelength and velocity of ultrasonic waves using ultrasonic diffractometer.
13	Determination of particle size of lycopodium powder.
14	Determination of slit width (diffraction due to a single slit).
15	Photo diode - V-I Characteristics

SEMESTER S1/S2 CHEMISTRY FOR PHYSICAL SCIENCE

Course Code	24SJGCCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on quality of life.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Engineering Materials Fuels: Calorific value – HCV and LCV – Experimental determination of calorific value of solid fuels. Analysis of coal – Proximate analysis- Octane & Cetane Number. Biofuels- Biodiesel-Green Hydrogen. Lubricants: Classification - Solid, Semisolid and Liquid lubricants. Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud Point, Pour Point & Aniline Point. Cement: Manufacture of Portland cement – Theory of setting and Hardening of cement. Nanomaterials: Classification based on Dimension & Materials-Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials –Supercapacitor Materials - Carbon Nanotubes, Fullerenes & Graphene – structure, properties & application. Polymers: ABS & Kevlar -Synthesis, properties and applications. Conducting Polymers- Classification – Application	9

	Electrochemistry and Corrosion Science	
2	Electrochemical Cell- Electrode potential- Nernst equation for single electrode and cell (Numerical problems)- Reference electrodes – SHE & Calomel electrode –Construction and Working - Electrochemical series - Applications – Glass Electrode & pH Measurement-Conductivity- Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel cell (acid electrolyte only) construction and working.	
	Corrosion –Electrochemical corrosion mechanism (acidic & alkaline medium) Galvanic series - Corrosion control methods - Cathodic Protection - Sacrificial anodic protection and impressed current cathodic protection –Electroplating of copper - Electroless plating of copper	
	Instrumental Methods of Analysis	
	Molecular Spectroscopy: Types of spectra- Molecular energy levels - Beer Lambert's law - Numerical problems - Electronic Spectroscopy - Principle, Types of electronic transitions -Role of Conjugation in absorption maxima - Instrumentation-Applications - Vibrational spectroscopy - Principle- Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O -Applications	
3	Thermal analysis : –TGA- Principle, instrumentation (block diagram) and applications – TGA of CaC ₂ O4.H ₂ O and polymers. DTA-Principle, instrumentation (block diagram) and applications -DTA of CaC ₂ O ₄ .H ₂ O.	9
	Chromatography - Gas Chromatography- Principle-Instrumentation- Application – Analysis of chemical composition of exhaust gases.	
	Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications.	
	Environmental Chemistry	
4	Water characteristics - Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Degree of hardness (Numericals) Water softening methods-Ion exchange process-Principle, procedure and advantages. Reverse osmosis — principle, process and advantages. — Water disinfection methods — chlorination-Break point chlorination, ozone and UV irradiation. Dissolved oxygen (DO), BOD and COD- Definition & Significance	9
	Waste Management: Air Pollution- Sources & Effects-Greenhouse Gases- Ozone depletion. Control methods. Sewage water treatment- Primary, Secondary and Tertiary - Flow diagram - Trickling filter and UASB process. Solid waste-disposal methods-Composting, Landfill & Incineration.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from Each module.	Each question carries 9 marks.Two questions will be given from each module,	
• Total of 8 Questions, each carrying 3 marks	Out of which 1 question should be answered. • Each question can have a maximum of 3 subdivisions.	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Describe the use of various engineering materials in different industries.	К2	
CO2	Explain the Basic Concepts of Electrochemistry and Corrosion to Explore the Possible Applications in Various Engineering Fields.	К2	
CO3	Apply appropriate analytical techniques for different engineering materials	К3	
CO4	Outline various water treatment and waste management methods	K2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	3									2
CO3	3	3									2
CO4	3	3				2					2

		Text Books		
Sl. No	Title of the Book Name of the Author/s Name of the Publisher		Edition and Year	
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018
2	Physical Chemistry	P. W. Atkins	Oxford University Press	Internation al Edition- 2018
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17th Edition - 2015

	Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995		
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017		
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015		
4	Polymer Chemistry: An Introduction	Raymond B. Seymour,Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996		
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014		

6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024
7	Principles and Applications Of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://archive.nptel.ac.in/courses/104/106/104106137/https://archive.nptel.ac.in/courses/113/105/113105102/https://archive.nptel.ac.in/courses/113/104/113104082/https://www.youtube.com/watch?v=BeSxFLvk1h0		
2	https://archive.nptel.ac.in/courses/113/104/113104102/ https://archive.nptel.ac.in/courses/104/105/104105124/ https://archive.nptel.ac.in/courses/105/104/105104157/		

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of experiments

Expt. Nos.	Experiment (Minimum 10 experiments)
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
5	Synthesis of polymers (a) Urea-formaldehyde resin
3	(b) Phenol-formaldehyde resin
6	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in solution
	Determination of molar absorptivity of a compound (KMnO ₄ or any water-soluble
7	food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method

12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

SEMESTER S2
ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

Course Code	24SJGCEST203	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparation of drawings
- 2. To develop the ability to accurately interpret engineering drawings
- **3.** To learn the features of CAD software(s).

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination) Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Traces of a line. Inclination of lines with reference planes True length and true inclinations of line inclined to both the reference planes.	18
2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone Cylinder and tetrahedron. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	16
3	Sections of Solids: Sections of tetrahedron, Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes)	

4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations. Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	18
---	---	----

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination -1 (Written)		Internal Examination - 2(Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

2 Questions from one module.	Total
Total 8 Questions, each question carries 15 marks	
(15x4 =60marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Understand and plot the projection of points and lines located in different quadrants	К3	
CO2	Prepare Multiview orthographic projections of objects by visualizing them in different positions	К3	
CO3	Plot sectional views and develop surfaces of a given object	К3	
CO4	Prepare pictorial drawings using the principles of isometric projection	К3	
CO5	Sketch simple drawing using cad tools.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									
CO2	3	2									
CO3	3	2									
CO4	3	2									
CO5	3	2	2		3						

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	Ist Edition 2012			
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	5th Edition 2017			
	Engineering Graphics for degree	John, K. C.	Prentice Hall India Publishers	Published in 2011			
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	10th Edition 2016			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.	Prentice Hall India Publishers	2009			
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	4 th edition 2007			
3	Engineering Drawing	Parthasarathy, N. S., And Murali, V.	Oxford University Press	2015			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/112/102/112102304/				
2	https://archive.nptel.ac.in/courses/112/102/112102304/				
3	https://archive.nptel.ac.in/courses/112/102/112102304/				
4	https://archive.nptel.ac.in/courses/112/102/112102304/				

SEMESTER S2 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	24SJGCEST204	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- **2.** Develop an awareness on the fundamentals of electric power generation, transmission and distribution
- **3.** Compare different types of DC and AC motors
- 4. Describe the fundamental concepts of electronic components and devices
- **5.** Develop an understanding of electronic instrumentation, sensors and their applications in contemporary world

SYLLABUS

Module No.	e Syllabus Description				
	DC Circuits : Resistance in Series and Parallel, Ohms Law and Kirchhoff's laws, Voltage and current divider rule (Fundamental numerical problems)				
1	Generation of alternating voltages: - Faradays laws of Electromagnetic induction, Generation of Alternating Voltage, Elementary Generator, Representation of ac voltage and currents, sinusoidal waveforms: frequency, period average, RMS values and form factor of waveform; (Fundamental numerical problems)	14			
1	AC circuits: Purely resistive, inductive and capacitive circuits; Inductive and capacitive reactance, concept of impedance. (Fundamental numerical problems)	17			
	Three phase AC systems: Representation of three phase voltages; star and delta connections (balanced only), relation between line and phase voltages, line and phase currents				
	Power in AC circuits – Power factor; active, reactive and apparent power in single phase and three phase system. (Simple				

	numerical problems)	
	Generation of electrical energy: Conventional Sources: Hydro, thermal, nuclear plants (Block diagram description)	
	Introduction to non-conventional energy sources: solar, wind, small hydro plants, PV system for domestic application.	
	Transformers. Principle of operation, step-up and step-down transformers	
	AC power supply scheme: Single phase and three phase system, Three phase 3 wire and 4 wire systems, Transmission System, Distribution system: Feeder, distributor, service mains	14
2	DC Motors – Principle of Operation: Block diagram showing power stages, losses and efficiency (electrical, mechanical and overall efficiency); Types and applications. Fundamental numerical problems.	14
	AC motors: Classification and different type of dc and ac motors, Principle of traction	
	Earthing: need for earthing, Types of earthing; pipe earthing, plate earthing;	
	Principle of operation of MCB, ELCB/RCCB	
	Introduction to Semiconductor devices:	
	Electronic components- Passive and active components - Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, colour coding.	
	PN Junction diode: - Principle of operation, V-I characteristics. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation	
3	Digital Electronics: -Binary number system, Boolean algebra and Logic Gates, Universal gates.	11
	Basic electronic circuits: - Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator.	
	Amplifiers: - Transistor as an amplifier, Block diagram of Public Address system	
	Electronic Instrumentation:	
4	Quality of measurements -accuracy, precision, sensitivity and resolution, Working principle and applications of Sensors – pressure – strain gauge, Bourden gauge, temperature – RTD, thermocouple, proximity – capacitive sensor, ultrasonic sensor and accelerometer.	11
L		

Internet of things (IoT): Introduction, architecture of
IoT, Implementation of smart city – street lighting, smart
parking.

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	60
• Each carrying 3 marks (8x3 =24marks)	• Each question can have a maximum of 3 subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	K2			
CO2	Develop an awareness on the fundamentals of electric power generation, transmission and distribution	K2			
CO3	Compare different types of DC and AC motors	K2			
CO4	Describe the fundamental concepts of electronic components and devices	K2			
CO5	Develop an understanding of electronic instrumentation, sensors and their applications in contemporary world.	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3		2			2					2
CO3	3					1					2
CO4	3	1									2
CO5	3		1			2					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019			
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill				
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018			
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020			

5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the	Edition and Year				
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019				
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019				
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S.Sukhija	Oxford Higher Education	3/e 2017				
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017				
5	Electronic Devices and Circuit Theory	Robert L. Boylestad Louis Nashelsky	Pearson	11e 2015				
6	Principles of Electronic Communication Systems	Frenzel, L. E	McGraw Hill	4e 2016				
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017				
8	Electronic Communication	Dennis Roddy and John Coolen	McGraw Hill	4/e 2008				
9	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019				

SEMESTER S2

ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to all Branches)

Course Code	24SJICEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- **3.** Create a comprehensive business plan for a new venture.
- **4.** Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance for startups.
- **5.** Develop skills for prototyping, stakeholder engagement, and team collaboration.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Ideation, Innovation & Entrepreneurship What is Ideation? Understanding Innovation Frameworks for Innovation The Entrepreneurial Mindset Starting a Business, types formation statutory compliances. Resources for Aspiring Entrepreneurs Introduction to Intellectual Property Rights (IPR) Types of IPR: Patents, trademarks, copyrights, trade secrets Strategies for protecting intellectual property based on the type of innovation Role of IPR in securing funding and competitive advantage Importance of building a strong team 	9
	 Identifying roles Skill sets Team dynamics Identifying Pain Points and problem statement Idea Generation Techniques 	

Developing and Refining Ideas	
Develop strategies for bringing your innovation to life	
Problem and solution canvas preparation	
 Orientation and canvas introduction Customer needs assessment Market segmentation Value proposition Competitive analysis Market entry strategy Market validation Regulatory and legal considerations Customer profiling Review of market research Customer segmentation Customer profiling Persona development Validation and feedback Prioritisation and selection Communication and messaging 	9
 Identify competitors Competitor profiling SWOT analysis Market positioning Customer feedback and reviews Pricing analysis Differentiation strategy Benchmarking and improvement Business plan preparation Business plan framework Market analysis Product/ service description Marketing and sales strategy Operations plan Financial projections Risk management 	9
Prototype development plan preparation Prototype requirements analysis Technical specifications Development approach Development timeline Resource allocation Testing and quality assurance Iterative development and feedback loop Documentation and version control	9
	Problem and solution canvas preparation Orientation and canvas introduction Customer needs assessment Market segmentation Value proposition Competitive analysis Market entry strategy Market validation Regulatory and legal considerations Customer profiling Review of market research Customer segmentation Customer profiling Persona development Validation and feedback Prioritisation and selection Communication and messaging Competitor analysis Identify competitors Competitor profiling SWOT analysis Market positioning Customer feedback and reviews Pricing analysis Differentiation strategy Benchmarking and improvement Business plan preparation Business plan framework Market analysis Product/ service description Marketing and sales strategy Operations plan Financial projections Risk management Prototype development plan preparation Prototype requirements analysis Technical specifications Development timeline Resource allocation Testing and quality assurance Iterative development and feedback loop

Prototype development Stakeholder engagement strategies	
• Investors	
Partners	
• Customers	
Advisors & Mentors	

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Ex-1	Internal Ex-2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	Each question carries 6 marks.	
• Total of 8 Questions, each carrying 2 marks (8x2 = 16 marks)	Two questions will be given from each module, out of which 1 question should be answered.	
(6.12 10 1.111 1.15)	• Each question can have a maximum of 2 subdivisions.	
	$(4 \times 6 = 24 \text{ marks})$	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Gain foundational knowledge of Ideation, Innovation and Entrepreneurship and importance of Intellectual Property Rights (IPR).	K2		
CO2	Develop a framework for identifying, curating and validating engineering-based business ideas grounded on customer analysis.	КЗ		
CO4	Develop a comprehensive business plan for a new venture by gaining knowledge of essential tools for understanding product-market fit and customer needs and competitor profiling.	К3		
CO5	Develop skills for prototyping, stakeholder engagement, and team collaboration.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	3	3	3	3	3					
CO2	2	2	3	3	3	3	3	3			
CO3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	The Engineering Handbook	Richard C. Dorf	CRC Press	2 nd edn, 2004		
2	The Innovator's DNA	Clayton M. Christensen and Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)		
3	Start with Why	Simon sinek	Portfolio	Reprint edition (December 27, 2011)		
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010		

5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016
7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020

SEMESTER S1/S2 HEALTH AND WELLNESS

(Common to all Groups)

Course Code	24SJICHWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- **4.** To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description					
	Human Body Systems related to Physical activity and its functions: Respiratory System - Cardiovascular System.					
	Musculoskeletal System and the Major Muscle groups of the Human Body. Quantifying Physical Activity Energy Expenditure and Metabolic equivalent of task (MET)					
	Exercise Continuum: Light-intensity physical activity, Moderate – intensity physical activity, Vigorous -intensity physical activity.					
1	Defining Physical Activity, Aerobic Physical Activity, Anaerobic Physical Activity, Exercise and Health-Related Physical Fitness.	4				
	FITT principle to design an Exercise programme					
	Components of Health-related Physical Fitness: - Cardiorespiratory Fitness- Muscular strength- Muscular endurance- Flexibility- Body composition.					

2	Concept of Health and Wellness: Health and wellness differentiation, Factors affecting health and wellness. Mental health and Factors affecting mental health. Sports and Socialization: Sports and character building - Leadership through Physical Activity and Sports Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet - Carbohydrate & the Glycemic Index Animal & Plant - based Proteins and their Effects on Human Health Dietary Fats & their Effects on Human Health Essential Vitamins and Minerals	2
3	Lifestyle management strategies to prevent / manage common hypokinetic diseases and disorders - Obesity - Cardiovascular diseases (e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low back pain, Kyphosis, lordosis, flat foot, Knock knee) Meaning, Aims and objectives of yoga - Classification and importance of of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types - Active Lifestyle and Stress Management Through Yoga Understanding on substance abuse and addiction - Psychoactive substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative - Cocaine - Other stimulants, including caffeine - Hallucinogens - Tobacco - Volatile solvents.	4
4	First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains - Fractures - Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) - Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion, Laceration, Incision, Sprain & Strain)	2

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	K2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	К2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	К2
CO4	Explain the basics of first aid and describe common sports injuries	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1				2		3	3	3	2		2
CO2				2		3	2	2			2
CO3						3	3				2
CO4				2		3					2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999		
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022		

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018	
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022	
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar,A.	National Drug Dependence Treatment Centre, New Delhi	2005	
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998	
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012	
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams &Wilkins	2010	

Continuous Internal Evaluation Marks (CIE): for the Health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation	
Attendance	Students must attend at least 75% of both theory and practical classes. They will receive 10 marks based on their class attendance. Students who do not meet the minimum attendance requirement for a course, as specified in the B. Tech regulations, will not be eligible to proceed to the next criteria.	

Assignment / Presentation	Assignments will be given to students to assess their understanding of the subjects taught. Students will be required to make presentations on the subjects taught in class, and their understanding of the subjects will be assessed. Based on the Assignments and Presentations the students will be awarded marks out of 20	
Activity Evaluation	The Assignment / Presentation faculty handling the class will use the tests from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India Fitness Protocol and the evaluation will be based on the benchmark score received for the following tests: - V Sit Reach Test - Partial Curl Up - 30 seconds - Push Ups (Male) and Modified Push Up (Female) - Two (2) Km Run/Walk Students who achieve a total benchmark score of 8 across the aforementioned 4 tests will be awarded pass marks for activity evaluation. Students who score better will be awarded a maximum mark of 20.	
Activity Evaluation - Special Circumstances	Physically challenged and medically unfit students can opt for an objective test to demonstrate their knowledge of the subjects taught. Based on their performance in the objective test, they will be awarded marks out of 20.	
Activity Evaluation - Special Considerations - NCC	Students who enrolled themselves in the NCC during the course period (between the start and end dates of the program) and attended 5 college level parades will be awarded pass marks for activity evaluation. Students who attend more parades will be eligible for a maximum mark of 20 based on their parade attendance.	

Tests to evaluated as per Benchmark Scores V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- **3.** Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.
- **4.** Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position

Scoring for V Sit Reach Test for Males

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds How to Perform:

- 1 The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.
- 2 The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3 The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for Female How to Perform:

- 1 A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2 Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3 This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4 For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46

6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk How to Perform:

- **1.** Participants are instructed to run or walk 2 kms in the fastest possible pace.
- **2.** The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- **3.** Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION

(Common to all Branches)

Course Code	24SJICHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.

- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1. Activity Table

Sl. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-		
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	Connecting with group membersTime managementGantt Chart	
	Preparation of Gantt chart based on the time plan	SS	1	G	2		
	Take an online						
	personality development test, self-reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their	L	1	I	2	 Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work- Compiling of ideas Mind mapping 	CO1

	friend/sibling/cousin						
2.3	Role-storming exercise 2: Students assume the role of their teacher and write about the - Skills required as a B. Tech graduate, - Attitudes, habits, approaches required and activities to be practised during their B.Tech years, in order to achieve the set goals	SS	1	I	2		CO1
2.4	Discuss the skills identified through role storming exercise by each one within their own group and improvise the list of skills	L	1	G	2		CO1
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		CO1
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs/academia (at least 1 through LinkedIn)	SS	3	Ι	2	 Workplace awareness Listening Communication - interacting with people Networking 	
4.2	Interact with them to understand their					through various	

	workplace details including • workplace skills required • their work experience • activities they have done to enhance their employability during their B. Tech years • suggestions on the different activities to be done during B. Tech years Prepare a documentation of this	SS	3	I	4	media including LinkedIn Discussion in groups Report preparation Creativity Goal setting - Preparation of action plan	CO2
	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected by the individuals. Prepare the Minutes of the discussions	SS	3	G	2		CO2
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	~~	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study						

	materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	22	6	G	2		CO5
5.4	Arrive at a possible solution using six thinking hat exercise		7	G	3		CO3
5.5	Prepare a report based on the problem- solving experience		7	G	2		CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3		CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2
8	Prepare a short video presentation on diversity aspects observed in our society (3 to 5 minutes)		10	G	3	Diversity	CO2, CO5
9	Take online Interview skills development sessions like robotic	SS	10	I	2	• Interview skills	CO6

	interviews; self-reflect and report						
10	Take an online listening test, self- reflect and report		11	I	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students		8	I/G	4	• English vocabulary	CO4
11.2	Activities to help students identify errors in English language usage	T	9	I/G	2		CO4
11.3	Activity to help students identify commonly misspelled words, commonly mispronounced words and confusing words	L	10	I/G	2	English language skills	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course		12	I	2	WritingPresentationGroup workSelf-reflection	CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart prepared	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/ research work tried out in Kerala context by academicians/professionals/Govt.agencies/ research institutions/privateagencies/ NGOs/	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media 	CO2, CO4, CO5

	other agencies				platforms • Profile building		
12	Upload the video content 2.2 to podcasting platforms or YouTube	12	G	1		CO5	ĭ
12	Add the link of the 2.3 podcast in their LinkedIn profile	12	G	1		CO5	· ·

Table 2. Lab hour Activities (P): 24 Marks

Sl No	Activity	Marks	Skill	CO
1	 Hands-on sessions on day-to-day engineering skills and a self- reflection report on the experience gained: Drilling practice using electric hand drilling machines. Cutting of MS rod and flat using electric hand cutters. Filing, finishing and smoothening using electrically operated hand grinders. MS rod cutting using Hack saw by holding the work in bench wise. Study and handling different types of measuring instruments. Welding of MS, SS work pieces. Pipe bending practice (PVC and GI). Water tap fitting. Water tap rubber seal changing practice. Union and valves connection practice in pipes. Foot valve fitting practice. Water pump seal and bearing changing practice. 	24	Basic practical engineering skills	3
2	Language Lab sessions	-	Language Skills	4

	Course Outcome	Bloom's Knowledge Level (KL)
01	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	K5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	K5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	K6
CO5	Develop the ability to create effective presentations through audiovisual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	K6

CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	K6
-----	--	----

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1									1		3
CO2					1		3		3		3
CO3		1	1		1				1		1
CO4					1				1		2
CO5					1	1			1		2
CO6					1				1		

	Text Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022			
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020			
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023			
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016			
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017			
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016				
,	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018				
1 3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017				
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023				
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004				

SEMESTER S2 CIVIL ENGINEERING DRAFTING LAB

Course Code	24SJPCCEL208	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	24SJGCEST104/ Equivalent	Course Type	Practical

Course Objectives:

- 1. To introduce the fundamentals of Civil Engineering Drawingand understand the principles of planning.
- 2. To enable students to learn the drafting of buildings manually and using drafting software.

Details of Experiment

Expt. No	Experiment
1	Introduction to Civil Engineering Drawing, Concept of Scale, Plan, Section and Elevation. Drawing tools and accessories, Manual and Computer Aided Drafting Draw the view of simple objects (books, shelves, benches, etc.) adopting appropriate scales
2	Draw sectional details and elevation of paneled doors.
3	Draw sectional details and elevation of wooden glazed window.
4	Draw elevation, section and detailing of connection between members for steel roof truss
5	Draw plan, section and elevation of dog legged staircase
6	Prepare a model of a single storied building with card board from given drawings (Not expected to complete in the lab hours)
7	Draw plan, section and elevation of single storied residential building from the given line sketch.
8	Draw plan, section and elevation of two-storied framed building from the given line sketch.
9	Draw plan, section and elevation of an industrial building.

10	Introduction to Auto CAD: Preparation of CAD drawing of any of the building components (Experiments 2-5)
11	Preparation of CAD drawing of plan, section and elevation of single storied residential building (Experiment 7).

Course Assessment Method

(CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate ability to organize civil engineering drawings systematically and professionally	К2
CO2	Illustrate the detailing of building components like doors, windows, roof trusses etc.	К2
CO3	Develop the sketch of plan, front elevation and sectional elevation from line diagram.	К3
CO4	Draft the plan elevation and sectional views of the residential buildings, industrial buildings, and framed structures using software.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3						3	3	1		2
CO2	3						3	3	1		2
CO3	3						3	3	1		2
CO4	3				2		3	3	1		2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Building Drawing and Detailing	Dr. Balagopal T.S. Prabhu	Spades Publishers, Calicut	Revised Edition 2022					
	Building Drawing With An Integrated Approach to Built Environment	Shah, M.G., Kale, C. M. and Patki, S.Y.	Tata McGraw Hill Publishing Company Limited, New Delhi	5 th edition 2017					
3	Building Planning and Drawing	M.V. Chitawadagi S.S. Bhavikatti	Dreamtech Press	2019					

References				
Sl. No	Title of the Book			
1	National Building Code of India (refer the latest updates)			
2	Kerala panchayat building rules (refer the latest updates)			
3	Kerala Municipality building rules (refer the latest updates)			
4	IS962: 1989 (Reaffirmed 2022) Indian Standard Code of practice for architectural and building drawings			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

5. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

6. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

7. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

8. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

9. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S2

MECHANICS OF SOLIDS

Course Code	24SJPCCET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	24SJGCEST103/ Equivalent	Course Type	Theory

Course Objectives:

- 1. To provide students with a fundamental understanding of the mechanics of deformable bodies and help them develop their analytical and problem-solving skills.
- 2. To introduce students to the various internal effects induced in structural members and their deformations due to different types of loading.
- **3.** To enable students to determine the stress, strain, and deformation of loaded structural elements.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Concept of stress and strain – types, stress – strain relation – Hooke's law, Young's modulus of elasticity. Stress-strain diagram of mild steel. Factor of safety, working stress. Axially loaded bars with uniform and uniformly varying cross section–stress, strain and deformation. Temperature effects, temperature stress in composite bars. Shear stress and shear strain, Modulus of rigidity, simple shear, punching shear. Lateral strain, Poisson's ratio, volumetric strain. Bulk modulus of elasticity, relationships between elastic constants. Strain energy – concept. Strain energy due to normal stress. Strain energy in bars carrying axial loads. Strain energy due to shear stress.	11
2	Beams – different types. Types of loading on beams. Concept of bending moment and shear force. Relationship between intensity of load, shear force and bending moment. Shear force and bending moment diagrams of cantilever beams, simply supported beams and overhanging beams for different type of loads. Point of contraflexure.	11

3	Theory of simple bending, assumptions and limitations. Calculation of normal stress in beams, moment of resistance. Shear stress in beams. Beams of uniform strength. Strain energy due to bending – calculation of strain energy in beams. Derivation of differential equation for calculating the deflection of beams – Macaulay's method.	10
4	Stresses on inclined planes for uniaxial and biaxial stress fields. Principal stresses and principal planes, maximum shear stress in 2D problems. Mohr's circle of stress for 2D problems. Short column – direct and bending stress. Kern of a section. Slender column – Euler's buckling load, slenderness ratio, limitation of Euler's formula. Rankine's formula. Torsion of circular and hollow circular shafts, Power transmitted by Circular shafts and hollow circular shafts. Strain energy due to torsion.	12

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, Each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	60
(8x3 =24marks)	 Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Recall the fundamental terms and theorems associated with mechanics of linear elastic deformable bodies.	K1
CO2	Explain the behavior and response of various structural elements under various loading conditions.	К2
CO3	Apply the principles of solid mechanics to calculate internal stresses/strains, stress resultants and strain energies in structural elements subjected to axial/transverse loads and bending/twisting moments.	К3
CO4	Choose appropriate principles or formula to find the elastic constants of materials making use of the information available.	К3
CO5	Perform stress transformations, identify principal planes/ stresses and maximum shear stress at a point in a structural member.	К3
CO6	Analyse the given structural member to calculate the safe load or proportion the cross section to carry the load safely.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	1	1	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	1	-	-
CO5	3	2	-	_	_	_	_	-		-	-
CO6	3	3	2	-	-	_	_	-	-	_	-

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Mechanics of Structures	H. J. Shah and S. B. Junnarkar	Charotar Publishing House	32nd Edition 2016	
,	A Text book of Strength of Materials	R. K. Bansal	Laxmi Publications	6 th Edition 2018	
3	Mechanics of Materials	B. C. Punmia, Ashok K. Jain, Arun Kumar Jain	Laxmi Publications	Revised Edition 2017	

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Mechanics of Solids	Egor P. Popov	Prentice Hall International Series	2 nd Edition 2015		
2	Mechanics of Materials	James M Gere, S.P. Timoshenko	CBS Publishers and Distributors	2 nd Edition 2004		
3	Mechanics of Materials	R.C. Hibbeler	Pearson	10 th Edition 2018		
4	Strength of Materials	S. Ramamrutham and R.Narayanan	Dhanpat Rai Publishing Co	18 th Edition 2014		
5	Strength of Materials	Rattan	McGraw Hill Education India	3 rd Edition 2016		

Video Links (NPTEL, SWAYAM)					
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104160/				

Programme Outcomes (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyse complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyse and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

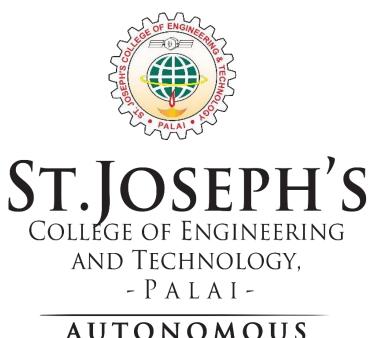
PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

Knowledge and Attitude Profile (WK)

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Department of

Civil Engineering


To develop into a globally reputed center of excellence in the field of Civil Engineering for imparting knowledge and technical skills suiting the needs of the society with distinct identity and character in teaching, research and consultancy.

Mission

- To follow Teaching Learning process and conducive infrastructure with the support of qualified and committed faculty in Civil Engineering Programs.
- To establish a team of dedicated faculty in academic pace for collaborating with academia and community to serve local and state enterprises.
- To make the students self-learners and socially committed engineers for individual and collective accomplishments and also for nurturing moral and ethical values for their successful careers.

Program Specific Outcomes (PSOs):

- To practice Civil Engineering within industry, government and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation and water resources.
- To grow professionally in their careers through continued development of technical, management, communication skills and to achieve their professional aims ethically and with cultural competency.

AUTONOMOUS

Vision

Developing into a world class, pace setting institute of Engineering and Technology with distinct identity and character, meeting the goals and aspirations of the society.

Mission

- To maintain a conducive infrastructure and learning environment for world class education.
- To nurture a team of dedicated, competent and research-oriented faculty.
 - To develop students with moral and ethical values, for their successful careers, by offering variety of programs and services.