

SYLLABUS

B.Tech. ELECTRICAL AND ELECTRONICS ENGINEERING 2024 SCHEME

www.sjcetpalai.ac.in

COURSES

SEMESTER – I	1
MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE-1	2
CHEMISTRY FOR INFORMATION SCIENCE AND PHYSICAL SCIENCE	5
ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING	11
INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING	14
ALGORITHMIC THINKING WITH PYTHON	19
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP	27
LIFE SKILLS AND PROFESSIONAL COMMUNICATION	
SEMESTER – II	
MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE-2	41
PHYSICS FOR ELECTRICAL SCIENCE	44
ENGINEERING MECHANICS	51
PROGRAMMING IN C	54
MEASUREMENTS AND INSTRUMENTATION	58
ENGINEERING ENTREPRENEURSHIP AND IPR	63
HEALTH AND WELLNESS	68
IT WORKSHOP	77

SEMESTER – I

	SEMESTER I COURSES													
SI	t		se e	se ory	Course Title		Cre Strue	edit ctur	e		Total	Marks	its	/eek
No:	Slo	Course Code	Coun Typ	Coun Categ	(Course Name)	L	Т	Р	R	SS	CIE	ESE	Cred	Hrs./W
1	А	24SJGYMAT101	BSC	GC	Mathematics for Electrical Science and Physical Science-1	3	0	0	0	4.5	40	60	3	3
	В	24SJGBPHT121			Physics for Electrical Science									_
2	S1/ S2	24SJGXCYT122	BSC	GC	Chemistry for Information Science and Electrical Science	3	0	2	0	5.5	40	60	4	5
3	С	24SJGXEST103	ESC	GC	Engineering Graphics and Computer Aided Drawing	2	0	2	0	4	40	60	3	4
4	D	24SJGXEST104	ESC	GC	Introduction to Electrical & Electronics Engineering (part 1: Electrical Engineering)	2	0	0	0	3	20	30	2+ 2=	4
			5	d	(Part 2: Electronics Engineering)	2	0	0	0	3	20	30	4	
5	F	24SJICEST105	ESC	IC	Algorithmic Thinking with Python	3	0	2	0	5.5	40	60	4	5
6	L	24SJGXESL106	ESC	GC	Basic Electrical and Electronics Engineering Workshop	0	0	2	0	1	70	30	1	2
	I*	24SJICHWT127	HWP	5	Health and Wellness	1	0	1	0	0	50	0		
7	S1/ S2	24SJICHUT128	НМС	IC	Life Skills and Professional Communication	2	0	1	0	3.5	100	0	1	2/3
8	S1/ S2	24SJICSEM129	SEC	IC	Skill Enhancement Course: Digital 101(NASSCOM)		М	00	С	2		-		
	Total 30/ 32 20 25						25/ 26							

Bridge Course (Mathematics or Introduction to Computer Science) *: Total 15 Hrs. *No Grade Points will be awarded for the MOOC course and I slot course.

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

Course Code	24SJGYMAT101	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Pre-requisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

- To provide a comprehensive understanding and basic techniques of matrix theory to analyse linear systems.
- To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms and understanding Fourier series, enabling students to analyse and model dynamic systems encountered in engineering disciplines effectively.

Course Outcomes (COs)

At the end of the course students should be able to:

Course	Outcome	Bloom's Knowledge Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equations with constant coefficients.	К3
CO3	Compute Laplace transforms and apply it to solve ODEs arising in engineering.	К3
CO4	Determine the Taylor series and Fourier series expansion for different periodic functions and to apply in engineering Problems	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	2

Module	Syllabus Description	Contact Hours	СО
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear independence: Rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix eigen value problem, Determining eigen values and eigen vectors, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9	1
2	Homogeneous linear ODEs of second order, Superposition principle, General solution, Homogeneous linear ODEs of second order with constant coefficients (Method to find general solution, Solution of linear initial value problem). Non-homogenous ODEs (with constant coefficients) - General solution, Particular solution by the method of undetermined coefficients (Particular solutions for the functions $ke^{\gamma x}$, kx^n , $kcos\omega x$, $ksin\omega x$, $ke^{\alpha x}cos\omega x$, $ke^{\alpha x}sin\omega x$), Initial value problem for Non-Homogeneous second order linear ODE (with constant coefficients), Solution by variation of parameters (second order). (Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	9	2
3	Laplace Transform, Inverse Laplace transform, Linearity property, First shifting theorem, Transform of derivatives, Solution of initial value problems by Laplace transform (second order linear ODE with constant coefficients with initial conditions at $t = 0$ only), Unit step function, Second shifting theorem, Dirac delta function and its transform (initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9	3
4	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier series (Dirichlet's conditions), Fourier series of 2π periodic functions, Fourier series of 2 <i>l</i> periodic functions, Half range sine series expansion, Half range cosine series expansion. (Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant topics from section 10.8)	9	4

SYLLABUS

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
------------	------------------------------	--	---	-------

5 15	10	10	40
------	----	----	----

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks)	Each question carries 9 marks. Two questions will be given from each module, out of which one question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks)	60

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
2	Calculus	H.Anton, I.Biven, S.Davis	Wiley	12 th edition, 2024			
	10						

	Example 2 Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023			
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017			
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019			
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021			
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			
6	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002			

Video Links (NPTEL, SWAYAM)				
ModuleNo.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/104/111104031/			
3	https://archive.nptel.ac.in/courses/111/106/111106139/			
4	https://archive.nptel.ac.in/courses/111/101/111101164/			

CHEMISTRY FOR INFORMATION SCIENCE AND ELECTRICAL SCIENCE

Course Code	24SJGXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- 1. To equip students with a comprehensive understanding of chemistry concepts that are relevant to engineering applications.
- 2. To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- 3. To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on the quality of life.

Course Outcomes (COs)

At the end of the course students should be able to:

Course	Outcome So	Bloom's Knowledge Level (KL)
CO1	Explain the Basic Concepts of Electrochemistry and Corrosion to explore the possible applications in various engineering fields	К2
CO2	Describe the use of various engineering materials in different industries	K2
CO3	Apply appropriate analytical techniques for the synthesis and characterization of various engineering materials.	К3
CO4	Outline various water treatment and waste management methods	К2

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	3									2
CO3	3	3									2
CO4	3	3				2					2

SYLLABUS

Module	Syllabus Description	Contact Hours	CO
	Electrochemistry and Corrosion Science		
1	Electrochemical Cell- Electrode potential- Nernst equation for single electrode and cell (Numerical problems)- Reference electrodes – SHE & Calomel electrode –Construction and Working - Electrochemical series - Applications – Glass Electrode & pH Measurement-Conductivity Measurement using Digital conductivity meter. Li-ion battery & H2-O2 fuel cell (acid electrolyte only) construction and working. Corrosion –Electrochemical corrosion mechanism (acidic & alkaline medium) - Galvanic series - Corrosion control methods - Cathodic Protection - Sacrificial anodic protection and impressed current cathodic protection – Electroplating of copper - Electroless plating of copper	9	1
2	Materials for Electronic Applications Nanomaterials - Classification based on Dimension & Materials Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials – Carbon Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots – structure, properties & application. Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated polymers (Examples only)- Conducting Polymers-Classification Polyaniline & Polypyrrole-synthesis, properties and applications. Organic electronic materials and devices- construction, working and applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized Solar Cells (DSSC) Materials used in Quantum computing Technology, Super capacitors, Spintronics	9	2
3	Molecular Spectroscopy and Analytical Techniques Spectroscopy- Types of spectra- Molecular energy levels - Beer Lambert's law – Numerical problems - Electronic Spectroscopy – Principle, Types of electronic transitions –Role of conjugation in absorption maxima Instrumentation-Applications – Vibrational spectroscopy – Principle Number of vibrational modes - Vibrational modes of CO2 and H2O – Applications Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers Working and Application. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications.	9	3

	SEMESTER-I	CHEMISTRY FOR INFORMATION SCIENCE AND ELECTRICAL	SCIENCE	
4	Environmen Water charac Permanent - (Numericals) Principle, pro process and a Break point c (DO), BOD a Waste Manag Tertiary - Flo Methods of climate chan Development	tal Chemistry teristics - Hardness - Types of hardness- Temporary and Disadvantages of hard water -Degree of hardness Water softening methods-Ion exchange process- ocedure and advantages. Reverse osmosis – principle, dvantages. – Water disinfection methods – chlorination- hlorination, ozone and UV irradiation. Dissolved oxygen nd COD- Definition & Significance. ement: Sewage water treatment- Primary, Secondary and w diagram -Trickling filter and UASB process. E Waste, disposal – recycle, recovery and reuse. Chemistry of ge- Greenhouse Gases- Ozone Depletion-Sustainable - an introduction to Sustainable Development Goals.	9	4

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10 00	10	10	-15	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any onefull question out of two questions

Part A	Part B	Total
2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks)	Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks)	60

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-lab work (2 Marks)

- Pre-lab assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of theory: Evaluation based on students' preparation and

SEMESTER-I

understanding of the theoretical background related to the experiments

- 2. Conduct of experiments (2 Marks)
 - Procedure and execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
 - Skill proficiency: Proficiency in handling equipment, accuracy in observations, and trouble shooting skills during the experiments.
 - Teamwork: Collaboration and participation in group experiments.
- 3. Lab reports and record keeping (3 Marks)
 - Quality of reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
 - Timely submission: Adhering to deadlines for submitting lab reports/rough record/ maintaining a well organized record.
- 4. Viva voce (3 Marks)
 - Oral examination: Ability to explain the experiment, results and underlying principles during viva voce session.

Final marks averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

- 1. Procedure/Preliminary work/Conduct of experiments (2 Marks)
 - Procedure understanding and description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary work and planning: Thoroughness in planning and organizing materials / equipment.
 - Setup and execution: Proper setup and accurate execution of the experiment or programming task.
- 2. Result (2 Marks)
 - Accuracy of results: Precision and correctness of the obtained results.
- 3. Viva voce (1 Mark)
 - Proficiency in answering questions related to theoretical and practical aspects of the subject

	Text Books				
Sl.No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018	
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition-2018	
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005	
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai PublishingCompany	17 th Edition - 2015	

	Reference Books					
Sl.No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th Edn.,1995		
2	Principles of Physical Chemistry	B. R. Puri, L. R.Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017		
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage LearningIndia Pvt. Ltd	2015		
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition,1996		
5	The Chemistry of Nanomaterials: Synthesis, Properties andApplications	Prof. Dr. C. N. R. Rao, Prof. Dr. H.C. Mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH& Co. KGaA	2014		
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024		
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008		

	Hand And And And And And And And And And A
	Video Links (NPTEL, SWAYAM)
SI No.	Link ID
1	https://archive.nptel.ac.in/courses/104/106/104106137/ https://archive.nptel.ac.in/courses/113/105/113105102/ https://archive.nptel.ac.in/courses/113/104/113104082/ https://www.youtube.com/watch?v=BeSxFLvk1h0
2	https://archive.nptel.ac.in/courses/113/104/113104102/ https://archive.nptel.ac.in/courses/104/105/104105124/ https://archive.nptel.ac.in/courses/105/104/105104157/

Expt. Nos.	Experiment	CO
1	Estimation of iron in iron ore	4
2	Estimation of copper in brass	4
3	Determination of cell constant and conductance of solutions	1
4	Calibration of pH meter and determination of pH of a solution	1
5	Synthesis of polymers (a) Urea-formaldehyde resin (b) Phenol-formaldehyde resin	2
6	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in solution	3
7	Determination of molar absorptivity of a compound (KMnO ₄ or any water-soluble food colorant)	3
8	Analysis of IR spectra	3
9	Identification of drugs using TLC	3
10	Estimation of total hardness of water-EDTA method	4
11	Estimation of dissolved oxygen by Winkler's method	4
12	Determination of calorific value using Bomb calorimeter	2
13	Determination of saponification value of a given vegetable oil	2
14	Determination of acid value of a given vegetable oil	2
15	Verification of Nernst equation for electrochemical cell.	1
	VAN	

List of Experiments (*Minimum 10 Experiments)

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

Course Code	24SJGXEST103	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. Learn the principles and techniques of dimensioning and preparation of drawings.
- 2. Develop the ability to accurately interpret engineering drawings.
- 3. Learn the features of CAD software(s).

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and plot the projection of points and lines located in different quadrants	К3
CO2	Prepare Multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	K3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using CAD tools.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
C01	3	2									
CO2	3	2									
CO3	3	2									
CO4	3	2									
C05	3	2	2		3						

SYLLABUS

Module	Syllabus Description	Contact Hours	CO
1	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination) Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Traces of a line. Inclination of lines with reference planes. True length and true inclinations of line inclined to both the reference planes.	18	CO1
2	 Projection of simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone, Cylinder and Tetrahedron. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the references planes and with axis inclined to both reference planes. 	16	CO2
3	 Sections of Solids: Sections of Tetrahedron, Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes) 	16	CO3
4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations.		CO4
	Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	18	C05

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Class work	CAD – Internal Evaluation	Internal Examination -1 (Written)	Internal Examination - 2 (Written)	Total
5	10	5	10	10	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

2 Questions from one module.	Total
Total 8 Questions, each question carries 15 marks $(15x4 = 60marks)$	60

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	34 th Edition 2024		
2	Engineering Graphics	Benjamin, J.	Pentex Publishers	5 th Edition 2021		
3	Engineering Graphics using AutoCAD	T Jeyapo <mark>ov</mark> an	Vikas Publishing House Pvt. Ltd.	7 th Edition, 2015		
4	Engineering Graphics	Anilkumar, K. N.	Adhyuth Narayan Publishers	10 th Edition 2016		
5	Engineering Drawing	N. D. Bhatt	Charotar Publishing House Pvt. Ltd.	54 th Edition 2023		
	S	- /4-				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Graphics with AutoCAD	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.	Prentice Hall India Publishers	2009			
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	4 th edition 2007			
3	Engineering Drawing	Parthasarathy, N. S., and Murali, V.	Oxford University Press	2015			
4	Engineering Graphics for degree	John, K. C.	Prentice Hall India Publishers	Published in 2011			

Video Links (NPTEL, SWAYAM)				
Module	Link ID			
All	https://archive.pptel.ac.ip/courses/112/102/112102304/			
modules	nups.//archive.npter.ac.ni/courses/112/102/112102304/			

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

Course Code	24SJGXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. To provide an understanding of the fundamental principles of electrical engineering
- 2. To introduce the working principles of fundamental electronic devices and circuits
- 3. To provide an overview of the basic concepts in different types of communication.

SYLLABUS

Module No.	Syllabus Description	Contact Hours	CO
	Elementary concepts of DC electric circuits:	1	
	Fundamentals of Voltage, Current, Resistance and Power. Current	1	
	and Voltage Division Rule - Relative potential Capacitors and		
	Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff		
	s laws - numerical problems.		
	Star-delta conversion (resistive networks only - derivation		
	notrequired) -numerical problems. 🗛 📋 📐		
	Analysis of DC Electric circuits: Mesh current method -		
	matrix representation - Solution of network equations.	14	1
1	Node voltage methods-matrix representation-solution of network		
	equations by matrix methods - numerical problems.		
	Elementary Concepts of Magnetic circuits:		
	Magnetic Circuits: Basic Terminology: MMF, field strength, flux		
	density, reluctance - Comparison between electric and magnetic		
	circuits - Series and parallel magnetic circuits with composite		
	materials (numerical problems not needed)		

	Electromagnetic Induction:		
	Faraday's laws, Lenz's law- statically induced and dynamically induced emf		
	- Self-inductance and mutual inductance, coefficient of coupling		
	(numerical problems not needed)		
	Alternating Current fundamentals:		
	Generation of alternating voltages - Representation of sinusoidal		
	waveforms: frequency, period, average value, RMS value and form		
	factor -numerical problems		
	AC Circuits: Phasor representation of sinusoidal quantities,	14	2
2	Trigonometric, Rectangular, Polar and complex forms.	14	2
	Analysis of simple AC circuits: Purely resistive, inductive &		
	capacitive circuits; Inductive and capacitive reactance, concept of		
	impedance - numerical problems. F ENG//		
	RL, RC and RLC series circuits- power factor, active, reactive and		
	apparent power. Simple numerical problems.		
	Three phase AC systems: Generation of three phase voltages,		
	advantages of three phase systems, star and delta connections	2	
	(balanced only), relation between line and phase voltages, line		
	and phase currents- numerical problems		
	Introduction to Electronic devices:	7	
	Passive and active components in electronics. Working of PN	/	
	junction diode, V-I characteristics of PN Junction diode.		
	Zener diode and avalanche breakdown. Basics of Zener voltage regulator		
	Block diagram of DC power supply, circuit and working of half wave, full		
	wave and bridge rectifiers, ripple factor (with and without capacitor filters)		
	Construction, working and V-I Characteristics of BJT, Input output	13	3
3	characteristics of CE configuration, Comparison of CE, CB and CC		
	configurations. Transistor as a switch, Transistor as an amplifier (Circuit		
	Diagram and working)		
	RC coupled amplifier - Circuit diagram and frequency response Introduction		
	to FET, Construction and working of N-channel and P- Channel MOSFETs		

	Modern Electronics and its applications:		
	General block diagram of a Communication system, Block diagram		
	ofFiber optic Communication system		
	Concept of AM and FM (No derivation required), Block diagram of		
	AMand FM super-heterodyne receiver		
	Basic concepts of Wired and Wireless communication, Block diagram		
4	ofGSM	9	4
	Comparison of 3G, 4G, 5G and 6G communication technologies		
	Block diagrams of Electronic instrumentation system, Digital		
	Multimeter, Function generator		
	Introduction to CRO and Lissajous patterns		
	Applications of modern electronics - IoT based smart homes,		
	healthcareand agriculture (Case study only)		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10~	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any onefull question out of two questions

.

Part A	Part B	Total
• 2 Questions from	• Each question carries 9 marks.	
eachmodule.	• Two questions will be given from each	
• Total of 8 Questions,	module, out of which 1 question should be	60
each carrying 3 marks	answered.	60
	• Each question can have a maximum of	
(8x3 =24 marks)	3 subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental concepts and circuit laws to solve simple electric and magnetic circuits.	К3
CO2	Understand electromagnetic induction and AC systems.	K2
CO3	Describe the characteristics of key electronic components and their roles in various circuits.	K2
CO4	Outline the principles of communication systems & Identify an application of electronics in the contemporary world.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	10/						00	1	2
CO2	2	1	0	/					1F		2
CO3	2	4	Ť					-	m	7	2
CO4	2	1				3			5		2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Basic Electrical Engineering	D P Kothari and I J	Tata McGraw Hill	4/e 2019				
2	Schaum's Outline of Basic	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010				
3	Basic Electronics: Principlesand Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018				
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J.Nagrath	McGraw Hill	2/e 2020				
5	The Internet of Things: HowSmart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015				
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017				
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			

0

.

AI

AI

ALGORITHMIC THINKING WITH PYTHON

Course Code	24SJICEST105	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- 2. To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

Module No.	Syllabus Description	Contact Hours	CO
1	 PROBLEM-SOLVING STRATEGIES: - Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward). THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution. ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators and their precedence. 	7	CO1

SYLLABUS

	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition(for, while, repeat-until loops), Sample problems* FLOWCHARTS** :- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page		
2	connector. * - Evaluate an expression, d=a+b*c, find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits). ** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for the sample problems listed earlier may be discussed	9	CO2
3	 SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop. Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using <i>Numpy</i> library). DECOMPOSITION AND MODULARIZATION* :- Problem decomposition as a strategy for solving complex problems, Modularization, Motivation for modularization, Defining and using functions in Python, Functions with multiple return values RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, <i>Sample problems - Finding the nth Fibonacci number, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum ofdigits of a positive number **.</i> 	10	СО3

	* The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of <i>n>=3</i> integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits).		
	** Not to be limited to these exercises. More can be worked out if time permits		
4	 ** Not to be limited to these exercises. More can be worked out if time permits COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING (Introductory diagrammatic/algorithmic explanations only. Analysis not required) :- Brute-force Approach - Example: Padlock, Password guessing Divide-and-conquer Approach - Example: The Merge Sort Algorithm Advantages of Divide and Conquer Approach Disadvantages of Divide and Conquer Approach Dynamic Programming Approach Example: Fibonacci series Recursion vs Dynamic Programming Greedy Algorithm Approach Example: Given an array of positive integers each indicating the completion time for a task, find the maximum number of tasks that can be completed in the limited amount of time that you have. Motivations for the Greedy Algorithm Greedy Algorithms vs Dynamic Programming Randomized Approach Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting n different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one? Example 2: n people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty and returns the n hats randomly back to each person. What is the expected number of people who get back their hats? 	10	CO4

ALGORITHMIC THINKING WITH PYTHON

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written Examination)	Internal Examination-2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
•	module. Total of 8 Questions,	 Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub 	60
	(8x3 =24marks)	divisions. (4x9 = 36 marks)	

Course Outcomes (COs)

PALA

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Utilize computing as a model for solving real-world problems.	K2
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3
CO3	Utilize effective algorithms to solve the formulated models and translate algorithms into executable programs.	К3
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2		2			2	2		3
CO2	3	3	2	2	2				2		3
CO3	3	3	3	2	3			2	2		3
CO4	3	3	2	2				2	2		3

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	9/e, 2011		
2	How to Solve It: A New Aspect of Mathematical Method	George Pólya	Princeton University Press	2/e, 2015		
3	Creative Problem Solving: An Introduction	Donald Treffinger., Scott Isaksen, Brian Stead-Doval	Prufrock Press	4/e,2005		
4	Psychology (Sec. Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., & Perlmutter, M	H5P Edition	1/e, 2021		
5	Computational Thinking: A Primer for Programmers and Data Scientists	G Venkatesh Madhavan Mukund	Mylspot Education Services Pvt Ltd	1/e, 2020		
6	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2/e, 2001		
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024		
8	Introduction to Computation and Programming using Python	Guttag John V	PHI	2/e., 2016		

Video Links (NPTEL, SWAYAM)				
Module No. Link ID				
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/			

SYLLABUS	B. Tech. Programme in Electrical and Electronics Engineering
01111000	b. reen. rogramme in Electrical and Electronico Engineering

2 https://onlinecourses.nptel.ac.in/noc21_cs32/preview

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify three ill-defined problems and well-defined problems
- 2. Identify five use cases for Trial and error, Heuristics, backtracking, and Means-ends analysis.
- 3. Use a diagram to solve the Tower of Hanoi for three pegs with the minimum number of moves.
- 4. Evaluate different algorithms discussed earlier based on their efficiency by counting the number of steps.
- 5. A recursive function that takes a number and returns the sum of all the numbers from zero to that number.
- 6. A recursive function that takes a number as an input and returns the factorial of that number.
- 7. A recursive function that takes a number 'n' and returns the nth Fibonacci number.
- 8. A recursive function that takes an array of numbers as input and returns the product of all the numbers in the array.
- 9. A program to reverse the contents of an 1D array without using a second array.

- 10. To register for the end-semester examination, you need to log into the University portal with your credentials. Write a program to validate the credentials. Assume that the usernames are stored in an array of strings called USERNAME and the corresponding passwords are stored in another array of strings called PASSWORD such that password[i] is the password for the user username[i].
- 11. You are given a list and your task is to divide it to make two smaller lists. The sub lists should be made from alternate elements in the original list. So if the original list is {5,1,4,12,6}, then one sub list should be {5,4,6} and the other should be {1,12}.
- 12. A program that takes three points in a 2D plane and determines whether they are collinear. Two pairs of points are collinear if they have the same slope.

LAB Experiments:

- 1. Simple desktop calculator using Python. Only the five basic arithmetic operators.
- 2. Create, concatenate, and print a string and access a sub-string from a given string.
- 3. Familiarize time and date in various formats (Eg. "Thu Jul 11 10:26:23 IST 2024").
- 4. Write a program to create, append, and remove lists in Python using NumPy.
- 5. Program to find the largest of three numbers.
- 6. Convert temperature values back and forth between Celsius (c), and Fahrenheit (f). [Formula: c/5 = f-32/9]
- 7. Program to construct patterns of stars (*), using a nested for loop.
- 8. A program that prints prime numbers less than N.
- 9. Program to find the factorial of a number using Recursion.
- 10. Recursive function to add two positive numbers.
- 11. Recursive function to multiply two positive numbers.
- 12. Recursive function to find the greatest common divisor of two positive numbers.
- 13. A program that accepts the lengths of three sides of a triangle as inputs. The program should output whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 14. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 15. Program to check whether the given number is a valid mobile number or not using

functions. Rules:

- 1. Every number should contain exactly 10 digits.
- 2. The first digit should be 7 or 8 or 9
- 16. Input two lists from the user. Merge these lists into a third list such that in the merged list, all even numbers occur first followed by odd numbers. Both the even numbers and odd numbers should be in sorted order.
- 17. Write a program to play a sticks game in which there are 16 sticks. Two players take turns to play the game. Each player picks one set of sticks (needn't be adjacent) during his turn. A set contains 1, 2, or 3 sticks. The player who takes the last stick is the loser. The number of sticks in the set is to be input.
- 18. Suppose you're on a game show, and you are given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat. He then asks, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

(source:https://en.wikipedia.org/wiki/Monty_Hall_problem#:~:text=The%20Monty%20Hall%20pr oblem%20is,the%20American%20Statistician%20in%201975.)

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

Course Code	24SJGXESL106	CIE Marks	70
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	30
Credits	1	Exam Hours	2 Hrs.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To create awareness and familiarity with electrical wiring and safety measures to be taken.
- 2. To Identify various electronic components and to operate various measuring instruments
- 3. Learn to setup simple electronic circuits on breadboard and PCB

Expt. No.	Experiments
	Electrical Workshop
	a) Demonstrate the precautionary steps adopted in case of Electrical shocks.
1	b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and
	MCCB, familiarize the ratings.
2	Wiring of simple light circuit for controlling light/ fan point (PVC conduit wiring)
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)
4	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug socket with individual control.
5	Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.
6	Identify battery specifications using different types of batteries. (Lead acid, Li Ion, NiCd
_	Familiarize different types of Earthing (Pipe, Plate Earthing, Mat Schemes) and Ground
7	Enhancing Materials (GEM).

Electrical Workshop - Advanced Experiments				
1	Wiring of a power plug (16 A) socket with a control switch.			
2	Familiarization of step up and step-down transformers, (use low voltage transformers) Measurement and representation of voltage and waveform to scale in graph sheet with the help of CRO			
3	Familiarization of rheostats, measurement of potential across resistance elements and introducing the concept of relative potential using a DC circuit.			

ELECTRONICS WORKSHOP (Minimum of 7 Experiments to be done)					
	Familiarization/Identification of electronic components with specification (Functionality, type, size,				
_	colour coding, package, symbol and cost of -Active, Passive, Electrical, Electronic,				
I	Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays,				
	Crystals, Displays, Fasteners, Heat sink etc.) Crystals, Displays, Fasteners, Heat sink etc.)				
2	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data sheets of discrete components and IC's				
	Familiarization/Application of testing instruments and commonly used tools Multimeter, Function				
	generator, Power supply, CRO, DSO.				
3	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers,				
	Crimping tool, Hot air soldering and de- soldering station				
	Testing of electronic components using multimeter - Resistor, Capacitor, Diode, Transistor and				
4	JFET.				
	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processing methods.				
5	Design and fabrication of a single sided PCB for a simple circuit.				
	Inter-connection methods and soldering practice.				
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety precautions.				
	Soldering practice in connectors and general-purpose PCB, Crimping.				
	Assembling of electronic circuit/system on general purpose PCB, test and show the functioning				
	(Any two)-				
	Fixed voltage power supply with transformer				
7	Rectifier diode				
	Capacitor filter				
	• Zener/IC regulator				
	Square wave generation using IC 555 timer in IC base.				
8	Introduction to EDA tools (such as KiCad or XCircuit)				

Course Assessment Method (CIE: 70 marks, ESE: 30 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
10	60	70

*End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
5	10 DE	ENGIN	5	5	30

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome_A1	Bloom's Knowledge Level (KL)
CO1	Demonstrate safety measures against electrical shocks	K2
CO2	Familiarize with batteries and Earthing schemes	К2
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	К3
CO4	Identify various electronic components	K2
CO5	Operate various measuring instruments	К3
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	К3
CO7	Build the ability to work in a team with good interpersonal skills	К3

Note: KI- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1						3					2
CO2	1					2					2
CO3	2					1					2
CO4	3					2					3
CO5	3				3	2		2			3
CO6	3		3	1	3	2		2			3
CO7								3	2		2

CO-PO Mapping Table:

	Text Books									
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Electrical Design Estimating and Costing	K B Raina and S KBhattacharya	New Age International Publishers	2/e2024						
2	Electrical Systems Design	M K Giridharan	IK International Publishing House Pvt. Ltd	3/e2022						
3	Basic Electrical Engineering	DP Kothari and IJ Nagrath	Tata McGraw Hill	4/e2019						
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Me Graw Hill	2/e2017						

Continuous Assessment with equal weightage for both specializations (60 Marks)

- 1. Preparation and Pre-Lab Work (25 Marks)
 - Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
 - Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
 - Teamwork: Collaboration and participation in group experiments.

2. Lab Reports and Record Keeping (25 Marks)

• Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper

documentation of experiments, data analysis and conclusions.

• Timely Submission: Adhering to deadlines for submitting and maintaining a well-organized lab record.

3. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

*Evaluation Pattern for End Semester Examination (30 Marks)

ESE to be conducted by the course offering department based on the following evaluation criteria

- 1. Procedure/Preliminary Work/Design/Algorithm (5 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (10 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (5 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (5 Marks)

• A written examination or an MCQ to assess the knowledge level of the student in the experiments & proficiency in answering questions related to theoretical and practical aspects of the course.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

Course Code	24SJICHUT128	CIE Marks	100
Teaching Hours/ Week (L:T:P:R)	2:0:1:0	ESE Marks	0
Credits	1	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

LIFE SKILLS AND PROFESSIONAL COMMUNICATION

Course objectives:

- 1. To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- 2. To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- 3. To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making andwork management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills

developed through the HMC courses and Mini project course.

• Self-reflection questionnaire shall be given at the beginning of the semester, in between and atthe end of the semester based on the guidelines in the manual of the course.

SI. No.	Activity	Class room (L) / Self Study (SS)	Week of complet ion	Group / Individu al(G/I)	Marks	Skills	CO
	Group formation and self-						
1.1	introduction	L	1	G	-		
	among the group members						
1.2	Familiarizing the activities and preparation of the time plan for theactivities	EOF	ENG	G	\ <u>-</u>	Connecting with group members Time management -	
1.3	Preparation of Gantt chart based on the	SS		G	2	Gantt Chart	
	time plan						
0.1	Take an online personality				1-1	Self-awareness	
2.1	development test, self reflect and	SS	1	I	2	Writing	CO1
	Role-storming exercise 1:				191	1	
	Students assume 2 different roles				JEL	Goal setting	
	siverbalow and write about their				15-		
	givenbelow and write about their			/	2	Identification	
	• Strengths,					of skills and setting goa	
	• Areas for improvement,		ALA		5	l	
	• Concerns,	P				Self-awareness	
2.2	• Areas in which he/she hesitates to					Discussion ingroups	
2.2	takeadvice,	~ [$_{\rm J}$ $_{\rm U}$				
	• Goals/Expectations,	L	1	Ι	2	Group	CO1
	from the point of view of the					work-	
	followingassumed roles					Compiling	
	i) their parent/guardian/mentor					ofideas	
	ii) their friend/sibling/cousin					Mind manning	
						wind mapping	

Table 1: Activity Table

	Role-storming exercise 2:						
	Students assume the role of their						
	teacherand write about the						
	 Skills required as a B.Tech graduate 						
2.3	• Attitudes, habits, approaches						
	requiredand activities to be	SS	1	Ι	2		G 0 1
	practised during their B.Tech						COI
	years, in order to achieve the set						
	goals						
	Discuss the skills identified through						
	rolestorming excercise by each one						
2.4	within their own group and	L		G	2		
	improvise						CO1
	the list of skills	OF	ENG	AL	\		
	Prepare a mind map based on the	35		NEE.	1		
2.5	role- storming exercise and	SS	0 2	G	2		COL
	exhibit/present tun class				6		
	Prepare a presentation on				1-1		
3	instances of empathy they have				m		
_	observed in their		2 to 4		2	Empathy	CO2
	own life or in other's life				15	1	
	Each student connects and				10r		
	networkswith a minimum of 3		-0-		17		
	professionals from			10		Work place	
4.1	industry/public sector					Awareness	
	organizations/other	SSP		~5	2	Listening	
	agencies/NGOs					Communicatio	
	/academia (atleast 1 through LinkedIn)					n	
	Interact with them to understand their						
	workplace details including					interacting	
	• workplace skills required					with people	
	• their work experience					Networking	
	• activities they have done to					through	
4.2	enhance their employability during		3	I	4	various media	
	their B.Techyears	cc				LinkedIn	
	• suggestions on the different	60	5	1			CO2
	activities						
	to be done during B.Tech years						
	Prepare a documentation of this						

3
	Discuss the different workplace details&						
	work readiness activities assimilatedby each						
1.2	through the interactions within their group						
4.3	and compile the inputs collected by the	SS	3	G	2	Discussion in	
	individuals	22	C	Ū	-	groups	CO2
	Prepare the Minutes of the discussions					Report	
4.4	Report preparation based on the	66	4	C	2	Preparation	
4.4	discussions	22	4	G	3	Creativity	CO4
	Perform a role-play based on the					Goal setting	
45	workplace dynamics assimilated					Goal setting	
т.5	through interactions and group	L	5	G	4	Preparation	CO3
	discussions					of action plan	
	Identify their own goal and prepare an	\cap	Λ				
4.6	action plan for their undergraduate	SS	N 5	L	2		CO1
	journey to achieve the goal	OF	IGN	527			
	Select a real-life problem that requires a	-Le		12			
5.1	technical solution and list the study materials	L	6	G	2		CO3
	heeded						
	Listen to TED talks & video lectures from				m		
	renowned Universities related tothe problem				0		
5.2	and prepare a one-page summary (Each	CC		7 . /	E S		
	group member should	33	0	1/2			CO4
	select a different resource)			12	~		
5.3	Use any online tech forum to gather ideas	SS	6	G	2		
0.0	for solving the problem chosen			F)	-		CO5
5.4	Arrive at a possible solution using six	PAI		G	3		
	thinking hat exercise						CO3
5.5	Prepare a report based on the problem-solving	SS	7	G	2		~~ 4
	experience						CO4
6.1	Linkedin profile creation	SS	1	Ι	2		CO6
6.2	Resume preparation	SS	8	Ι	2	Profile-	CO6
6.3	Self-introduction video	SS	8	Ι	3	building	CO6
7	Prepare a presentation on instances of	SS	9	I	2	Emotional	~~~
/	demonstration of emotional intelligence	~0		-	-	intelligence	CO2
	Prepare a short video presentation on						
8	diversity aspects observed in our	SS	10	G	3	Diversity	$\begin{array}{c} \text{CO2,} \\ \text{CO5} \end{array}$
	society (3 to 5 minutes)						.05

LIFE SKILLS AND PROFESSIONAL COMMUNICATION

9	Take online Interview skills development sessions like robotic interviews; self-reflect and report	SS	10	Ι	2	Interview skills	CO6
10	Take an online listening test, self- reflect and report	SS	11	Ι	2	Listening skills	CO6
11.1	Activities to improve English vocabulary of students	L	8	I/ G	4		CO4
11.2	Activities to help students identify errors in English language usage	L	9	I/ G	2		CO4
11.3	Activity to help students identify commonly mispelled words, commonlymispronounced words and confusing words	L	10	I/ G	2	English	CO4
11.4	Write a self-reflection report on the improvement in English language communication through this course	OF E	NG/N 2	EEI	2	vocabulary English languageskills	CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various groupactivities and time management experience as per the Gantt chart prepared	L	11 to 12	G	R TECH	Writing Presentation Group work Self-reflection	CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SSA	A12	G	4	Audio-visual Presentations creations with the use of technology tools Effective use	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	of social media platforms	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1	Profile building	CO5

SI No	Activity	Marks	Skill	CO
1	Hands-on sessions on day-to-day engineering skills			
	and a self-reflection report on the experience gained:			
	1. Drilling practice using electric hand			
	drilling machines.			
	2. Cutting of MS rod and flat using electric	~		
	hand cutters.	24	Basic practical	
	3. Filing, finishing and smoothening using	EEL	engineering	3
	electrically operated hand grinders.	12/1	skills	
	4. MS rod cutting using Hack saw by holding the		0	
	work in bench wise.		80	
	5. Study and handling different types of		17	
	measuring instruments.	Ь	0	
	6. Welding of MS, SS work pieces.	1	IE S	
	7. Pipe bending practice (PVC and GI).		6	
	8. Water tap fitting.	16	5	
	9. Water tap rubber seal changing practice.	10	\sim	
	10. Union and valves connection practice in pipes.	~	>	
	11. Foot valve fitting practice.			
	12. Water pump seal and bearing changing practice.			
2	Language Lab sessions	-	Language Skills	4

Table 2. Lab hour Activities (P)(Any 8 Activities): 24 Marks

Course Outcomes

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	K2
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K2
CO3	Develop thinking skills, problem-solving and decision-making skills	К3
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	К2
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	К3
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	К3

CO-PO Mapping

			1 - 1						and the second se		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
C01				7	PA	LAI	2		1		3
CO2							3		3		3
CO3		1	1		1				1		1
CO4					1				1		2
CO5					1	1			1		2
CO6					1				1		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022						
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversar y Edition December 2020						
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023						
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016						
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017						
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition						

Reference Books											
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition And Year							
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016							
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018							
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017							
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023							
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004							

SEMESTER – II

	SEMESTER II COURSES													
SI.	Slot	Course	ourse Type	ourse	Course Title (Course Name)		Credit Structure		SS	Total Marks		edits	Week	
No:		Code	0	C			Т	Р	R		CIE	ESE	Cre	Hrs./
1	Α	24SJGYMAT201	BSC	GC	Mathematics for Electrical Science and Physical Science-2		0	0	0	4.5	40	60	3	3
	в	24SJGBPHT121			Physics for Electrical Science	14	\sim	>						
2	S1/ S2	24SJGXCYT122	BSC	GC	Chemistry for Information Science and Electrical Science	3	0	2	0	5.5	40	60	4	5
3	С	24SJGBEST213	ESC	GC	Engineering Mechanics		0	0	0	4.5	40	60	3	3
4	D	24SJGXEST204	ESC	GC	Programming in C	3	0	2	0	5.5	40	60	4	5
5	Е	24SJPCEET205	PC	PC	Measurements and Instrumentation	3	1	0	0	5	40	60	4	4
6	F	24SJICEST206	ESC	IC	Engineering Entrepreneurship and IPR	3	0	0	0	4.5	60	40	3	3
	*I	24SJICHWT127	HWP	7	Health and Wellness	1	0	1	0	0	50	0		
7	S1/ S2	24SJICHUT128	HM C	IC	Life Skills and Professional Communication	2	0	r	0	3.5	100	0	1	2/3
8	L	24SJGXESL208	ESC	GC	IT Workshop	0	0	2	0	1	50	50	1	2
	S1/ S2	24SJICSEM129	SEC	IC	Skill Enhancement Course: Digital 101 (NASSCOM)		00	C				1		
Total								_		34			24	27/ 28

*No Grade Points will be awarded for the MOOC course and I slot course

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 2

Course Code	24SJGYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Pre-requisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

To provide a comprehensive understanding of partial derivatives, multiple integrals and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

Course Outcomes (COs)

A	t the end of the course students should be able to:	
	Course Outcome	Bloom's Knowledge
		Level (KL)
	Compute the partial and total derivatives and maxima and	
CO1	minima of multivariable functions and to apply in engineering	K3
	problems.	
COL	Understand theoretical idea of multiple integrals and to apply	
	them to find areas and volumes of geometrical shapes.	K3
	Compute the derivatives and line integrals of vector functions	
003	and to learn their applications.	K3
COA	Apply the concepts of surface and volume integrals and	
CO4	tolearn their inter-relations and applications.	K3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	2

SYLLABUS

Module	Syllabus Description	Contact Hours	CO
1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - Relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5,	9	1
	13.8) ENCL Double integrals, Reversing the order of integration in		
2	double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	9	2
3	Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and Curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3)	9	3
4	Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Green's theorem, Surface integrals over surfaces of the form $z = g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes' theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7, 15.8)	9	4

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

Continuous Internal Evaluation Marks (CIE):

End Semester Examination Marks (ESE)

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which one question should be answered. Each question can have a maximum of 3 sub divisions (4x9 = 36 marks) 	60

	Text Books					
SI. No	Title of the Book	Name of theAuthor/s	Name of the Publisher	Edition and Year		
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		
			10-			

	Reference Books						
SI. No	Title of the Book	Name of theAuthor/s	Name of the Publisher	Edition and Year			
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemys law Bogacki	Pearson	15 th edition, 2023			
2	Essential Calculus	J. Stewart	Cengage	2^{nd} edition, 2017			
3	Advance Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021			
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			

Video Links (NPTEL, SWAYAM)			
Module	odule Link ID		
1	https://nptel.ac.in/courses/111107108		

Course Code	24SJGBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

PHYSICS FOR ELECTRICAL SCIENCE

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and to impart this knowledge in Electrical Science disciplines.
- 2. To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- **3.** To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

CVIII ADUC	
SYLLABUS	

Module	O Syllabus	Contact	CO
No.	Description	Hours	
1	Semiconductor Physics Intrinsic semiconductor, Derivation of density of electrons in conduction band and density of holes in valence band, Intrinsic carrier concentration, Variation of Intrinsic carrier concentration with temperature, Extrinsic semiconductor (qualitative) Formation of p-n junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of p-n junction - Qualitative description of charge flow across a p-n junction - Forward and reverse biased p-n junctions, Diode equation (Derivation), V-I Characteristics of p-n junction	9	1

	Semiconductor Devices		
	Semiconductor devices - Rectifiers- Full wave and Half wave,		
	Zener diode - V-I characteristics - Zener breakdown and Avalanche		
	breakdown, Tunnel diode - V-I characteristics, Applications of		
2	Zener and Tunnel diodes.	0	2
	Photonic devices (qualitative) - Photo detectors (Junction and PIN	7	2
	photodiodes), Applications, Solar cells- V-I Characteristics,		
	Efficiency, Stringing of Solar cells to solar panel, Light Emitting		
	Diode, Applications		
	of LED		
	Superconductivity & Dielectrics		
	Super conductivity, Transition temperature, Critical field, Meissner		3
	effect, Type I and Type II Super conductors, Applications of		
	superconductors.	2	
3	Dielectric constant, Polarization, Permittivity- relative permittivity,	9	
	Relation between polarization and dielectric constant, Types of		
	Polarization, Internal fields in liquids and solids, Clausius		
	Mossotti 🗧		
	Relation, Dielectric loss(qualitative), Dielectric breakdown (qualitative)		
	Laser & Fiber Optics		
	Optical processes - Absorption, Spontaneous emission and		
	stimulated emission, Properties of laser, Principle of laser -		
	conditions for sustained lasing – Population inversion, Pumping,		
	Metastable states, Basic components of laser - Active medium-		
4	Optical resonant cavity, Construction and working of Ruby laser,	9	4
	Semiconductor Laser (Qualitative), Applications of laser.	-	
	Optical fiber-Principle of propagation of light, Types of fibers-Step index		
	and Graded index fibers, Numerical aperture –Derivation,		
	Applications of optical fibers - Fiber optic communication system		
	(block diagram)		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

Continuous Internal Evaluation Marks (CIE):

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one fullquestion out of two questions

Part A	OF ENGUERAT B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
10	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply the fundamentals of Semiconductor Physics in engineering.	К3
CO2	Apply the behaviour of semiconductor materials in semiconductor devices and the theoretical knowledge to conduct experiments.	К3
CO3	Explain Superconductivity and basic theory of dielectrics.	K2
CO4	Apply the comprehended knowledge about laser and fiber optics in various engineering applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2						1	1		2
CO2	3	2						1	1		2
CO3	3										2
CO4	3	2						1	1		2

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003					
2	Engineering Physics	H K Malik and A K Singh	McGraw Hill Education	2 nd Edition, 2017					
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition 2018					

	Reference Books									
Sl. No	Title of the Book	S Name of the Author/s	Name of the Publisher	Edition and Year						
1	Semiconductor DevicesFundamentals	Robert F Pierret	Pearson Education	1995						
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002						
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010						
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022						
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019						
6	Advanced EngineeringPhysics	Premlet B	Phasor Books	10 th Edition, 2017						
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016						

Video Links (NPTEL, SWAYAM etc)							
Module No.	Link ID						
1	https://nptel.ac.in/courses/108106181						
2	https://nptel.ac.in/courses/108108112						
3	https://nptel.ac.in/courses/115103108						
4	https://nptel.ac.in/courses/115102124						

1. <u>Continuous Assessment (10 Marks)</u>

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that testunderstanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, andtroubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Properdocumentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record/ maintaining a well-organized record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principlesduring a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizingmaterials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List (Minimum 10 Experiments)

Experiment No.	Experiment
1	Diode characteristics
2	Zener diode- V-I characteristics
3	Measuring of unknown resistance using Wheatstone bridge
4	Half wave rectifier
5	Full wave rectifier
6	Solar Cell- V-I and Intensity Characteristics
7	Laser – Determination of wavelength using diffraction grating
8	CRO -Measurement of frequency and amplitude of wave forms
9	Numerical aperture of optical fiber

10	CRO- Lissajous Patterns
11	Laser- To measure the wavelength using a millimeter scale as a grating
	Compare the variation of current with potential difference, for a metal, filament
12	bulb and semiconductor diode.
13	Determination of dielectric constant
14	Characteristics of LED
15	Photo diode - V-I Characteristics
16	Hall effect in semiconductors
17	Advanced learning of experiments 1-5 using virtual labs (optional)

Course Code	24SJGBEST213	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

ENGINEERING MECHANICS

Course Objectives:

- To enable students to analyze basic mechanics problems and apply a vector-based approach to solve them.

Module No.	Syllabus Description	Contact Hours	СО
1	 Introduction to statics: Introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL on Simply supported and cantilever beams) Force systems: Rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D 	510	1
2	Friction: Laws of friction – analysis of blocks and ladder Centroid of composite areas- – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10	2
3	Dynamics – Rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. – motion on horizontal and inclined surfaces, motion of connected bodies. Combined motion of translation and rotation.	8	3
4	Mechanical vibration - Free and forced vibration, degree of freedom. Simple harmonic motion - spring mass model, period, stiffness, frequency, simple numerical problems of single degree of freedom	8	4

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part BOT LINGINE	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Recall principles and theorems related to rigid body mechanics and describe the components of forces acting on the rigid body	К2
CO2	Understand and apply the principles of friction and compute the centroid and moment of inertia of various composite areas	К3
CO3	Understand and apply the fundamental principles of rigid body dynamics in translation and rotation	К3
CO4	Understand and solve problems on mechanical vibration	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2									
CO2	3	3									
CO3	3	3									
CO4	3	3									
CO5	3	2									

CO-PO Mapping Table:

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017				
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015				
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall Of India.	4 th Edition 2008				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020			
2	Engineering Mechanics	Chandramouli	PHI Learning	2011			

Video Links (NPTEL, SWAYAM)					
	Link ID				
1	https://nptel.ac.in/courses/112106286				

PROGRAMMING IN C

Course Code	24SJGXEST204	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To prepare learner to write versatile C programs for solving computational problems that theycome across in their professional life.
- 2. To equip the learner to write efficient C programs using suitable language constructs to solvereal world computational problems.

SYLL	ABUS

Module No.	Syllabus Description	Contact Hours				
	C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic					
1	Data types, Variables, Operators and its precedence, Bit-wise operators,					
1	Expressions; Statements - Input and Output statements; Structure of a C	9				
	program; Simple programs.					
	Control Statements - if, if-else, nested if, switch, while, do-while, for, break					
	& continue, nested loops.					
	Arrays - Single dimensional arrays, Defining an array, Array initialization,					
	Accessing array elements; Enumerated data type; Type Definition; Two-					
2	dimensional arrays - Defining a two-dimensional array; Programs for matrix					
	processing; Programs for sequential search; Bubble sort;	0				
	Strings - Declaring a string variable, Reading and displaying strings,	, ,				
	String related library functions – Programs for string matching.					

PROGRAMMING IN C

3	 Functions - Function definition, Function call, Function prototype, Parameter passing; Recursion; Passing array to function; Macros - Defining and calling macros; Command line Arguments. Structures - Defining a Structure variable, Accessing members, Array of structures, Passing structure to function; Union. Storage Class - Storage Classes associated with variables: automatic, static, external and register. 	9
4	 Pointers - Declaration, Operations on pointers, Passing pointer to a function, Accessing array elements using pointers, Processing strings using pointers, Pointer to pointer, Array of pointers, Pointer to function, Pointer to structure, Dynamic Memory Allocation. Files- Different types of files in C, Opening & Closing a file, Writing to and Reading from a file, Processing files, Library functions related to file – fseek(), ftell(), fread(), fwrite(). 	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

200

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

.

End Semester Examination Marks (ESE)

Part A	Part B	Total					
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60					

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Infer a computational problem and develop C programs from them using basic constructs of C language including the control statements.	K2
CO2	Develop C programs using arrays, matrices, and strings.	K3
CO3	Utilize functions to find solution to the computational problems by dividing it into a number of modules and abstract data types.	К3
CO4	Develop C programs using pointers for dynamic data handling.	К3
CO5	Use files in C to permanently store and manipulate data.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

			0/								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1
CO1	3	3	3	3	-	-	-	5-	0) - (3
CO2	3	3	3	3			V	-	H	-	3
CO3	3	3	03	3	P	1-/	/	-/		-	3
CO4	3	3	3	3	-	0-	-	1-	~	-	3
CO5	3	3	3	3	-	- 7	-/.	6	~	-	3
				0					1		

Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Programming with C	Byron S Gottfried	Mc Graw Hill	4/e, 2018				
2	Problem Solving and Program Design in C	Jeri R. Hanly, Elliot B. Koffman	Pearson	8/e, 2016				

	Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The C Programming Language	Brian W. Kernighan and Dennis Ritchie	Pearson	2/e, 2015				
2	C The Complete Reference	Herbert Schildt	Mc Graw Hill	4/e, 2017				
3	Let us C	Yashavant Kanetkar	BPB Publishers	19/e, 2022				
4	Programming in ANSI C	E Balagurusamy	Mc Graw Hill	9/e, 2024				

MEASUREMENTS AND INSTRUMENTATION

Course Code	24SJPCEET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	PC -Theory

Course Objectives:

- 1. To introduce the concepts of electrical measurement systems and instrumentation.
- 2. To discuss the principles of operation and construction of basic instruments for measuring circuit parameters, magnetic quantities, and passive parameters using bridge circuits, sensors, and transducers.
- **3.** To introduce modern digital instrumentation systems.

Module No.	Syllabus Description	Contact Hours
1	 Functional Elements of Measurements Systems- Block Schematic and brief operation of building blocks Standards of Measurements- Static characteristics (accuracy, precision, linearity, resolution), Need for calibration, Types of errors Instruments- Classification; Operating Forces and Torques: deflecting, controlling and damping torques- Gravity and spring control; air, fluid friction and eddy current damping. Measurement of Voltage and Current- Moving Coil and Moving Iron types., Range Extension - shunts and multipliers (Include fundamental problems of range extension) 	11
2	Magnetic Measurement- Flux Meter, Determination of BH Curve - Hysteresis Loop (Method of Reversal). Measurement of Resistance,	11

SYLLABUS

	Wheatstone's Bridge, Kelvin's Double Bridge (Basic Problems),						
	Loss of Charge Method, Measurement of Earth Resistance. Measurement						
	of Inductance- Maxwell's Inductance Bridge, Measurement of Capacitance						
	- Schering's Bridge, Measurement of Frequency- Wien Bridge (Include						
	fundamental Problems) Q-meter, LCR Meters (Theory only)						
	Macanana of Denor and Engrand Macanana of Denor using						
	Measurement of Power and Energy: Measurement of Power using						
	Dynamometer type wattmeter, Three phase Power Measurement using						
	I wo waitmeter Method (include Phasor Diagrams and Expressions,						
	include basic problems of two wattmeter method)						
0	Measurement of Energy Using Induction type Energy Meter, Two						
3	Element Energy Meter . Instrument Transformers-CT and PT- Principle	11					
	of Operation- Range Extension. Basic Principles of Electronic Multimeter,						
	Digital Voltmeter Digital Energy Meter, TOD Meter, Smart						
	Metering, Bidirectional Meters						
	(Theory Only)						
	Block Schematic of electronic instrumentation system - role of						
	sensors and transducers Classification of Temperature transducers-						
	Principle of operation of Thermistors and RTD Classification of flow						
	transducers- Principle of operation of Electromagnetic and ultrasonic types						
	Strain gauge: Basic working principle, types and applications;						
4	Measurement of angular speed and luminous intensity Principles of	11					
	Digital Data Acquisition systems - Role of Signal conditioning systems						
	(Basic Principles only)- Phasor Measurement Unit (Block Schematic and						
	Theory Only) CRO, DSO and Harmonic Analyzers: Block Diagram, Basic						
	Principles and applications only Virtual Instrumentation Systems: Block						
	schematic and Description only IOT and Data analytics for Industrial						
	Process- Case study on Smart Grid						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-I (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

	PART A	PART B	TOTAL
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each	
•	Total of 8 Ouestions, each	G module, out of which 1 question should be	
	carrying 3 marks	answered.	60
		• Each question can have a maximum of 3 sub	
•	(8x3 =24marks)	divisions. $(4x9 = 36 \text{ marks})$	

Course Outcomes

At the end of the course students should be able to:

	7.8 26	Bloom's
	Course Outcome	Knowledge
	FALAI	Level (KL)
CO1	Understand various parameters and errors associated with measuring instruments and methods for measurement of voltage and current.	K2
CO2	Understand suitable methods for the measurement of magnetic quantities, resistance, inductance and capacitance.	K2
CO3	Apply suitable methods for the measurement of power and energy and the operation of digital measurement systems.	К3
CO4	Discuss the applications of modern instrumentation schemes for industrial process and various sensors and transducers in relation to measurements systems.	K2
Note: I	K1:Remember, K2: Understand, K3:Apply, K4:Analyse, K5: Evaluate, K6:	Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									2
CO2	3	3				2					2
CO3	3	3			2						2
CO4	3	2	3		3	2					2

Text Books							
SI. No	Title of the Book	Name of the Author/s	Nameofthe Publisher	Edition and Year			
	A course in Electrical and	A.K Sawhney	Dhanpat Rai & Co.	2023			
1	Electronic Measurements	NUM					
	& Instrumentation	OF ENGIN	~				
	A course in Electrical &	J.B. Gupta	S K Kataria & Sons	14 th Ed.,			
2	Electronic Measurement		P	2014			
	& Instrumentation		11				
2	Electrical Measurements &	Golding E.W and Widdis	Wheeler Pub.	3rd			
3	Measuring Instruments		\$0	Ed.,2011			
4	Electronic Instrumentation	H. S. Kalsi	McGraw Hill, New	4 th Ed.,			
4			Delhi	2019			
5	Principles of Electrical	S Tumanski	Taylor & Francis.	2006			
5	Measurement						
6	Electronic Instrumentation and	David A Bel	Oxford	3 rd Ed,,			
0	Measurements		124	2013			

Refere nee Books

SI. No	Title of the Book	Name of the Author/s	Nameofthe Publisher	Edition and Year		
	Modern Electronic	Albert D.	Prentice Hall of India	2016		
1	Instrumentation and	Helfrick, Cooper William				
	Measurement Techniques	D				
2	Basic Electrical Measurements	StoutM.B	Prentice Hall	2012		
3	Electronic Measurements & Instrumentation	Oliver & Cage	McGraw Hill	2017		
	Doebelin's Measurements	E.O Doebelin and D.N	McGraw Hill	7 th Ed.,		
4	Systems	Manik	Education (India) Pvt.	2019		
			Ltd.			
	Electrical and Electronics	P.Purkait, B.Biswas,	McGraw Hill	2013		
5	Measurements	S.Das and C. Kaley	Education (India) Pvt.			
	and Instrumentation		Ltd.,			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/108/105/108105153/ https://archive.nptel.ac.in/courses/108/108/108108147/				
2	https://archive.nptel.ac.in/courses/108/105/108105153/				
3	https://archive.nptel.ac.in/courses/108/105/108105153/				
4	https://archive.nptel.ac.in/courses/108/108/108108147/ https://archive.nptel.ac.in/courses/106/105/106105166/				

ENGINEERING ENTREPRENEURSHIP AND IPR

Course Code	24SJICEST206	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	40
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- Develop a framework for identifying, curating and validating engineering-based business ideas.
- Learn essential tools for understanding product-market fit and customer needs.
- Develop a comprehensive business plan for a new venture.
- Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance for startups.

10

• Develop skills for prototyping, stakeholder engagement, and team collaboration.

Course Outcomes (COs)

At the end of the course students should be able to:

 \mathbf{O}

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gain foundational knowledge of Ideation, Innovation & Entrepreneurship and importance of Intellectual Property Rights (IPR)	K2
CO2	Develop a framework for identifying, curating and validating engineering-based business ideas grounded on customer analysis	К3
CO3	Develop a comprehensive business plan for a new venture by gaining knowledge of essential tools for understanding product-market fit and customer needs and competitor profiling	К3
CO4	Develop skills for prototyping, stakeholder engagement, and team collaboration.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	3	3	3	3	3					
CO2	2	2	3	3	3	3	3	3			
CO3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3

SYLLABUS

Module	Syllabus Description	Contact Hours	СО
	Introduction to Ideation, Innovation & Entrepreneurship		
	• What is Ideation?		
	Understanding Innovation		
	• Frameworks for Innovation		
	• The Entrepreneurial Mindset		
	• Starting a Business, types formation statutory compliances.		
	Resources for Aspiring Entrepreneurs		
	Introduction to Intellectual Property Rights (IPR)		
	• Types of IPR: Patents, Trademarks, Copyrights, Trade secrets		
1	• Strategies for protecting intellectual property based on	9	1
	the type of innovation OF ENGIN		1
	• Role of IPR in securing funding and competitive advantage		
	Importance of building a strong team		
	Identifying roles		
	• Skill sets		
	• Team dynamics		
	Identifying Pain Points and problem statement		
	Idea Generation Techniques		
	Developing and Refining Ideas		
	• Develop strategies for bringing your innovation to life		
	Problem and solution canvas preparation		
	Orientation and canvas introduction		
	Customer needs assessment		
	• Market segmentation		
	• Value proposition		
	Competitive analysis		
	• Market entry strategy		
	Market validation		
2	• Regulatory and legal considerations	9	2
	Customer profiling		
	• Review of market research		
	Customer segmentation		
	Customer profiling		
	Persona development		
	• Validation and feedback		
	Prioritisation and selection		
	Communication and messaging		

	Competitor analysis			
	Identify competitors			
	Competitor profiling			
	SWOT analysis			
	Market positioning			
	Customer feedback and reviews			
	Pricing analysis			
	Differentiation strategy			
3	Benchmarking and improvement	9	3	
	Business plan preparation			
	Business plan framework			
	Market analysis			
	Product/Service description			
	Marketing and sales strategy			
	Operations plan			
	Financial projections OF LNG///			
	Risk management			
	Prototype development plan preparation			
	Prototype requirements analysis			
	Technical specifications			
	Development approach			
	Development timeline			
	Resource allocation			
	Testing and quality assurance			
4	• Iterative development and feedback loop	9	4	
	• Documentation and version control			
	Prototype development Stakeholder engagement strategies			
	• Investors			
	• Partners PALA			
	Customers			
	Advisors & Mentors			

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Exam 1	Internal Exam 2	Total
5	35	10	10	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 Each question carries 6 marks. 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2subdivisions. (4x6 = 24 marks) 	40

			101	
		Text Books	So	
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Entrepreneurship: Creating and Leading an entrepreneurial Organization	Arya Kumar	Peasrson	1 st Edition, 2012
2	The Innovator's DNA	Clayton M. Christensen and Jeffrey H. Dyer	Harvard Business Review Press	Revised edition (June 4, 2019)
3	Start with Why	Simon Sinek	Portfolio	Reprint edition (December 27, 2011)
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010
5	Entrepreneurship Development in India	Debasish Biswas and Chanchal Dey	Routledge Focus	1 st Edition, 2021
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016
7	Entrepreneurship The Practice and Mindset	Heidi M. Neck, Christopher P. Neck, Emma L. Murray	SAGE Publishers	1 st Edition, 2018
8	Entrepreneurship Development and Small Business Enterprises	Poornima M Charanatimath	Pearson Education	1 st Edition, 2006

	REFERENCE BOOKS					
1	The Engineering Handbook	Richard C. Dorf	CRC Press	2 nd Edn, 2004		
2	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011		
3	Patent Law	P. Narayanan	Eastern Law House	4 th Edition, 2023		
4	The Law of Copyright and Designs	B. L. Wadehra	Universal Law	5 th Edn/2010		
5	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001		
6	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020		

HEALTH AND WELLNESS

Course Code	24SJICHWT127	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	Theory and Practical

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- 2. To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- 3. To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- 4. To equip students with the ability to lead healthier lifestyles.
- 5. To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Human Body Systems related to Physical activity and its functions:	
	Respiratory System - Cardiovascular System.	
	Musculoskeletal System and the Major Muscle groups of the Human Body.	
	Quantifying Physical Activity Energy Expenditure and Metabolic	
	equivalentof task (MET)	
1	Exercise Continuum: Light-intensity physical activity, Moderate -intensity	4
	physical activity, Vigorous -intensity physical activity.	
	Defining Physical Activity, Aerobic Physical Activity, Anaerobic	
	Physical Activity, Exercise and Health-Related Physical Fitness. FITT principle to design an Exercise programme	
	Components of Health related Physical Fitness: - Cardiorespiratory	
	Fitness- Muscular strength- Muscular endurance- Flexibility- Body	
	composition.	

	Concept of Health and Wellness: Health and wellness differentiation,	
	Factors affecting health and wellness. Mental health and Factors	
	affecting mental health.	
	Sports and Socialization: Sports and character building - Leadership	
	through Physical Activity and Sports	
2	Diet and nutrition: Exploring Micro and Macronutrients: Concept of	2
	Balanced diet	
	Carbohydrate & the Glycemic Index	
	Animal & Plant - based Proteins and their Effects on Human Health	
	Dietary Fats & their Effects on Human Health	
	Essential Vitamins and Minerals	
	Lifestyle management strategies to prevent / manage common	
	hypokinetic diseases and disorders - Obesity - Cardiovascular diseases	
	(e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis	
	- Musculoskeletal disorders (e.g., osteoarthritis, Low back pain,	
	Kyphosis, lordosis, flat foot, Knock knee)	
3	Meaning, Aims and objectives of yoga - Classification and	4
	importance of Yogic Asanas (Sitting, Standing, lying) Pranayama and	
	Its Types - Active Lifestyle and Stress Management Through Yoga	
	Understanding on substance abuse and addiction - Psychoactive	
	substances & its ill effects- Alcohol- Opioids- Cannabis -Sedative -	
	Cocaine -Other stimulants, including caffeine -Hallucinogens -	
	Tobacco -Volatile solvents.	
	First aid and principles of First Aid: Primary survey: ABC (Airway	
	Breathing Circulation) Qualities of a Good First Aider	
	First aid measures for: - Cuts and scrapes - Bruises - Sprains -	
	Strains - Fractures - Burns - Nosebleeds	
4	First Aid Procedures: Cardionulmonary Resuscitation (CPR) -	2
	Heimlich Maneuver - Applying a sling	
	Sports injuries: Classification (Soft Tissue Injuries - Abrasion	
	Contusion, Laceration, Incision, Sprain & Strain)	

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context.Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foodsand unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

1

	Course Outcome	Bloom's KnowledgeLevel (KL)
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	К2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	K2
СО3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	К2
CO4	Explain the basics of first aid and describe common sportsinjuries	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create
CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1				2		3	3	3	2		2
CO2				2		3	2	2			2
CO3				0		3	3				2
CO4				2		3					2

Text Books					
SI. No	Title of the Book	Name of the Author/s G//	Name of the Publisher	Edition and Year	
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealth Publishers	1999	
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022	
	SH4				

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018		
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022		
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, NewDelhi	2005		
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998		
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams& Wilkins.	American College ɗ Sports Medicine.	2012		

6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams & Wilkins	2010
---	---	--	----------------------------------	------

Continuous Internal Evaluation Marks (CIE): for the Health and Wellness

Students will be evaluated as follows.

Title	Method of Evaluation		
	Students must attend at least 75% of both theory and practical classes. They will		
	receive 10 marks based on their class attendance.		
Attendance	Students who do not meet the minimum attendance requirement for a course, as		
	specified in the B. Tech regulations, will not be eligible to proceed to the next		
	criteria.		
	Assignments will be given to students to assess their understanding of the subjects		
	taught. Students will be required to make presentations on the subjects taught in		
Assignment /	class, and their understanding of the subjects will be assessed.		
rresentation	Based on the Assignments and Presentations the students will be awarded marks		
	out of 20		
	The Assignment / Presentation faculty handling the class will use the tests from the		
	Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India.		
(Measurements will be taken for all the tests of the FIT India Fitness Protocol and		
	the evaluation will be based on the benchmark score received for the following tests:		
	1. V Sit Reach Test		
Activity	2. Partial Curl Up - 30 seconds		
Evaluation	3. Push Ups (Male) and Modified Push Up (Female)		
	4. Two (2) Km Run/Walk		
	Students who achieve a total benchmark score of 8 across the aforementioned 4		
	tests will be awarded pass marks for activity evaluation. Students who score better		
	will be awarded a maximum mark of 20.		
Activity	Physically challenged and medically unfit students can opt for an objective test to		
Evaluation -	demonstrate their knowledge of the subjects taught. Based on their performance in		
Circumstances	the objective test, they will be awarded marks out of 20.		
Activity	Students who enrolled themselves in the NCC during the course period (between		
Evaluation -	the start and end dates of the program) and attended 5 college level parades will be		
Special Considerations -	awarded pass marks for activity evaluation. Students who attend more parades will		
NCC	be eligible for a maximum mark of 20 based on their parade attendance.		

Tests to evaluated as per Benchmark Scores of V Sit Reach Test and Benchmark Scores

V Sit Reach Test

How to Perform:

- 1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.
- 2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.
- 3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.
- 4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.
- 5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

- 1. A tape for marking the ground, marker pen, and ruler.
- 2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.
- 3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.
- 4. Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position.

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Males

Scoring for V Sit Reach Test for Females

HEALTH AND WELLNESS

SEMESTER-II

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 secondsHow to Perform:

- 1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to thebody.
- 2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling upthe desired amount (at least 6 inches above/along the ground towards the parallel strip).
- 3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch thefloor.

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch Scoring: Record the maximum number of Curl ups in a certain time period 30 seconds.

Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers

SEMESTER-II

HEALTH AND WELLNESS

1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push

Ups for Female How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35

7	10	>35
/	10	~55

2 Km Run/WalkHow to Perform:

- 1. Participants are instructed to run or walk 2 kms in the fastest possible pace.
- 2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.
- 3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

Scoring for 2Km Run/walk for Male

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2		10:42
3	6	
4	0 7	08:59
5	8	08:33
6	.9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes: Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

IT WORKSHOP

Course Code	24SJGXESL208	CIE Marks	50
Teaching Hours/Week(L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To provide a basic understanding about computer hardware, software, and computernetwork.
- 2. To familiarize the learner with the web development process using HTML, CSS, and JavaScript.

Exnt	Experiment
No	
110	(Minimum 10 Experiments)
1	Practice Computer Hardware – Familiarization CPU Box, Motherboard, CPU & Chip-set, Interface cards, Card slots, Hard disk, Cables, SMPS, NIC, Various ports, etc. Computer Peripherals - I/O Devices. Storage devices, Interface cards – Buses – Firmware
2	Familiarization of Boot process
3	Familiarizing installation of Linux and Windows operating systems
4	Familiarizing basic Unix/Linux commands - ls, mkdir, cp, mv, grep, rmdir, chmod, useradd, passwd, history, dmesg, cpuinfo, uname, du, time, write, fdisk
5	Familiarizing networking hardware - RJ45, UTP, fibre, switch, NIC, router, Wireless Access Point (WAP), modem
6	Familiarizing basic networking commands - ifconfig, ping, traceroute, nslookup, ssh, scp, telnet, ftp
7	View network traffic using Wireshark/Packet tracer

Details of Experiments

IT WORKSHOP

8	Familiarizing the steps how to configure and establishing a network connecting
9	Shell programming in Linux(bash)
10	Create a web page and deploy on a local web server.
11	Use JavaScript to validate forms.
12	Create an image slider using HTML, CSS, and JavaScript. Allow users to navigate between images using previous and next buttons.
13	Familiarisation of LaTeX - Basic only
14	Familiarisation of Development Environments - Visual studio code, Sublime Text, Atom
15	Introducing Repositories - Git / Bitbucket
	OF ENGINE

Course Assessment Method (CIE: 50 Marks, ESE: 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Experiment with the fundamental hardware components of a computer and how to interface them with software systems.	К3
CO2	Make use of the command line of Linux operating system and shell programming.	К3
CO3	Experiment with the data network communication scenarios using Wireshark.	К3
CO4	Develop basic websites using HTML, CSS & JavaScript and manage the versions.	К3

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

		/ ()/	/					~ >		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
C01	3	3	3		3			_ /	H(3
CO2	3	3	3	3	3			12			3
CO3	3	3	3	3	3	-		6	5		3
CO4	3	3	3	3	3		1	2			3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Invitation to Computer Science	G. Michael Schneider, Judith Gersting	Cengage	2/e, 2020			
2	LINUX for Developers: Jumpstart Your Linux Programming Skills	William Rothwell	Pearson	1/e, 2018			
3	HTML, CSS, and JavaScript -All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	1/e, 2018			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	The Architecture of Computer Hardware, Systems					
1	Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	5/e, 2014		
2	Mastering Git : Attain expert level proficiency with Git for enhanced productivity and efficient collaboration	Jakub Narębski	Packt	1/e, 2016		
3	Web Design with HTML, CSS, JavaScript, and Jquery.	Jon Duckett	Wiley	1/e, 2014		

Video Links (NPTEL,	
SWAYAM)	
SI.	Link-ID
No.	
1	https://overthewire.org/wargames/bandit/
2	https://www.w3schools.com/

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

• Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.

• Timely Submission: Adhering to deadlines for submitting lab reports/rough recordand maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlyingprinciples during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment orprogramming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment orquality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted.

Programme Outcomes (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyse complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6) **PO6: The Engineer and The World:** Analyse and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentation considering cultural, language, and learning differences.

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage

projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

Knowledge and Attitude Profile (WK)

WK1: A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.

WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.

WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.

WK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.

WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.

WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.

WK8: Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.

WK9: Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Department of Electrical and Electronics Engineering

Vision —•

Develop technically competent, emotionally strong and socially committed Electrical & Electronics Engineering professionals of international excellence.

- To develop and maintain a conducive infrastructure and learningenvironment, to bring out good quality Electrical & Electronics Engineering graduates.
- To appoint and retain a team of competent, dedicated and researchoriented faculty.
- > To inculcate ethical & moral values among students and faculty.

—— Program Specific Outcomes (PSOs): —

Graduates of the program will be able to:

- Apply knowledge of mathematics, science and engineering to design, commission and maintain various types of electrical systems and address challenges in the field.
- Derive sustainable solutions to complex electrical engineering problems that meet the specified needs with ethical, social and environmental considerations.
- Empower the students for lifelong learning so as to adapt to dynamic changes in Electrical Engineering.

AUTONOMOUS

Vision

Developing into a world class, pace setting institute of Engineering and Technology with distinct identity and character, meeting the goals and aspirations of the society.

Mission

- To maintain a conducive infrastructure and learning environment for world class education.
 - To nurture a team of dedicated, competent and researchoriented faculty.
 - To develop students with moral and ethical values, for their successful careers, by offering variety of programs and services.