

CURRICULUM & SYLLABUS

Minor in

Artificial Intelligence and Data Science

Offering Department: Artificial Intelligence and Data Science (AD)

Eligible Departments: CE, EC, EE, ME

2024 SCHEME

CURRICULUM

	Minor in Artificial Intelligence and Data Science										
Sl.	Semester	Course Code	Course Title (Course Name)	S	Credi Structu			To: Ma		Credits	Hrs./ Week
No:	Ser			L	Т	P	SS	CIE	ESE	Credits	, , con
1	3	24SJMNADT301	Introduction to Artificial Intelligence*/MOOC#	3	1	0	5	40	60	4	4
2	4	24SJMNADT401	Concepts in Machine Learning*/MOOC#	3	1	0	5	40	60	4	4
3	5	24SJMNADT501	Deep Learning*/MOOC#	3	1	0	5	40	60	4	4
4	4 6 24SJMNADT601 Natural Language Processing*/MOOC# 3 0					0	5	40	60	3	3
	Total						20			15	15

^{*} Students must register for theory courses listed in the 3rd and 4th semesters of the Minor curriculum.

Students who fail a theory course listed in the Minor curriculum are permitted to register for an alternate

MOOC course specified in the Minor curriculum.

SEMESTER S3

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Course Code	24SJMNADT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Introduce the fundamental principles of intelligent systems.
- 2. Impart a good insight into the characteristics of intelligent systems, knowledge representation schemes, logic and inference mechanisms.

SYLLABUS

Module	Syllabus Description	Contact				
No.	Introduction to Artificial Intelligence:-	Hours				
1	AI definition - Foundations of AI, History and applications of AI; Intelligent agents - Agents and Environments, The concept of rationality, The nature of environments, Structure of agents.	[7]				
\mathcal{L}	Problem Solving by Searching:- Problem Solving Agents and examples - Searching for Solutions; Uninformed					
2	Search strategies - Breadth First Search, Uniform Cost Search, Depth First Search, Depth Limited Search, Iterative deepening DFS; Heuristic function; Informed Search Strategies - Greedy Search, A* Search.					
3	Advanced Search and Game Playing:- Adversarial Search - Games, Optimal decisions in Games, MinMax algorithm, Alpha_Beta pruning; Constraint Satisfaction Problems-Constraint Propagation, Inferences in CSP's, Backtracking Search for CSP's.					
4	Knowledge, Logic, and Reasoning Patterns:- Knowledge Based Agents - The Wumpus World; Logic - Propositional Logic; First order logic - Syntax and Semantics, Using First Order Logic, Knowledge Engineering in First order logic, Inference in first order logic; Propositional vs. first order inference;					

Course Assessment Method CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	-
module.	 Two questions will be given from each module, out 	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	 Each question can have a maximum of 3 	60
(LL)	subdivisions.	
(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental concepts of intelligent systems.	K2
CO2	Apply searching strategies for real time scenarios.	К3
CO3	Apply Constraint satisfaction problems for real time scenarios.	К3
CO4	Apply methods of knowledge representation and processing within expert systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3								2
CO2	3	3	3	2							2
CO3	3	3	3	2	٠.	7 1					2
CO4	3	3	3	2	1		_/	7			2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	700	Text Books	18. C	
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1 (Artificial Intelligence – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021

(0/ /2	Reference Books		41
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Artificial Intelligence: A new Synthesis	J. Nilsson	Elsevier Publishers.	1/e, 1998
2	Computational Intelligence : A logical approach	David Poole, Alan Mackworth, Randy Goebel	Oxford University Press	1/e, 2004
3	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009

Video Links (NPTEL, SWAYAM)							
Course Details							
NPTEL Course Fundamentals of Artificial Intelligence, IIT Guwahati https://onlinecourses.nptel.ac.in/noc21_ge20/preview							