

CURRICULUM & SYLLABUS

Minor in Intelligent Systems and Automation

Offered by: Department of Electronics and Communication Engineering (EC)

Eligible Departments: AD, CA, CC, CE, CS, ME

2024 SCHEME

CURRICULUM

	Minor in Intelligent Systems and Automation										
No	Sl. No Semester	Course Code	Course Title	Credit Structure			aa	Total Marks		G P	Hrs./
SI	uəS			L	T	P	SS	CIA	ESE	Credits	Week
1	3	24SJMNECT309	INTRODUCTION TO SENSORS AND ACTUATORS*/MOOC#	3	1	0	5	40	60	4	4
2	4	24SJMNECT419	FUNDAMENTALS OF ANALOG AND DIGITAL ELECTRONICS*/ MOOC#	3	1	0	5	40	60	4	4
3	5	24SJMNECT519	EMBEDDED SYSTEMS*/ MOOC#	3		0	5	40	60	4	4
4	6	24SJMNECT619	INTRODUCTION TO ROBOTICS & AUTOMATION*/MOOC#	3	0	0	5	40	60	3	3
	Total 20							15	15		

^{*}Students must register for theory courses listed in the 3rd and 4th semesters of the Minor curriculum.

^{*}Students who fail a theory course listed in the Minor curriculum are permitted to register for an alternate MOOC course specified in the Minor curriculum.

SEMESTER 3 (S3)

INTRODUCTION TO SENSORS AND ACTUATORS

Course Code	24SJMNECT309	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Mins
Prerequisites (if any)	Nil	Course Type	Theory

Preamble:

Sensors and actuators play a vital role in manufacturing, machinery, aerospace, medicine, and robotics. Most of the advancements of the present day would not be possible without sensors.

	Course Outcomes	Bloom's Knowledge Level (KL)
CO 1	Get an exposure to sensors and actuators and its importance in the real world.	K2
CO 2	Explain the working of sensors and actuators, and its applications in real time scenario.	K2
CO 3	Explain the working principle of different types of rotary actuators	K2
CO 4	Understand the basic idea on the controls in NC machine and fluidic system.	K2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	25	-			1) -	2	-	-
CO2	2	2	2	- P	ALA	1 -	-	-	2	-	-
CO3	3	2	2	V- \		J	-	-	2	-	-
CO4	2	2	2	-	-	-	-	-	2	-	-
CO5	2	2	2	-	-	-	-	-	2	-	-

Syllabus

Module 1 (9 Hours)

Introduction- Classification of Sensors and Actuators - Magnetic Sensors - Linear and Latching Solenoid Actuators - Stepper Motors - Special Magnetic Devices - Rotary and Linear Actuators - Magnetic Materials and Technology - Soft Magnetic Materials - Hard Magnetic Materials - Coating Technologies - Magnetic Materials Applications

SJCET Palai Page 3 of 5

Module 2(9 Hours)

Magnetic Sensors - Theory of Magnetic Sensors - Magnetic Sensor Analysis - VR Sensors - Solid-State Sensors - Magnetic Sensor Applications - Magnetic Speed Sensor Requirements - Magnetic Speed Sensor Applications - Magnetic Position Sensor Applications.

Linear Actuators - Mathematical Model for Linear Actuators - Fast-Acting Actuators - Disk Solenoids - Plunger Solenoids - Ball Solenoids - Conical Solenoids - Applications of Solenoid Actuators - Compressor Solenoid Valves - Transmission Solenoids

Module 3 (9 Hours)

Rotary Actuators - Disk Rotary Actuators - Disk Rotary Actuator Design - Disk Rotary Actuator Excitation Electromagnetic Circuit - Disk Rotary Actuator Toothed Magnetic Part - Claw Pole Rotary Actuators - Claw Pole Rotary Actuator Design - Claw Pole Rotary Actuator Excitation Electromagnetic Circuit - Claw Pole Actuator Toothed Magnetic Part - Cylindrical Rotary Actuators - Cylindrical Rotary Actuator

Excitation Electromagnetic Circuit - Cylindrical Rotary Actuator Toothed Magnetic Structure - Rotary Actuator Applications - Disk Rotary Actuator Application - Claw Pole Rotary Actuator Application - Cylindrical Rotary Actuator Application

Module 4 (9 Hours)

Controls in NC Machines and fluidic control- stepping motors- feedback devices- encoders - resolvers - inductosync —Tachogenerators - principles of fluid logic control -Coanda effect - basic fluidic devices - fluidic logic gates - bistable flip-flop - OR and NOR gates - exclusive OR gates - fluidic sensors - backpressure sensor.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE): 40 Marks

Attendance Assignment/ Microproject		Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total	
(Weightage: 12.5%)	(Weightage: 37.5%)	(Weightage: 25%)	(Weightage: 25%)		
5	15	10	10	40	

End Semester Examination Marks (ESE): 60 marks

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

SJCET Palai Page 4 of 5

Part A	Part B	Total	
• 2 Questions from	Each question carries 9 marks.		
each module.	Two questions will be given from each		
• Total of 8 Questions,	module, out of which 1 question should be	(0)	
each carrying 3 marks	answered.	60	
	• Each question can have a maximum of 3		
(8x3 =24marks)	sub divisions.		
	(4x9 = 36 marks)		

Text Books

1. Andrzej M. Pawlak, "Sensors and Actuators in Mechatronics, Design and Applications", Taylor & Francis Group, 2006

Reference Books

- 1. Andrew Parr, "Hydraulics and Pneumatics", Jaico Publishing House, Mumbai
- 2. YoramKoren, 'Computer control of Manufacturing Systems', TataMc.Graw Hill Publishers, New Delhi
- 3. Robert H. Bishop, "Mechatronic systems, Sensors and Actuators Fundamentals and Modelling, Taylor & Francis Group, 2007

SJCET Palai Page 5 of 5